Abstract

The method of spectrometric determination of gas concentration by use of a mask is examined and described. Calibration curves for four gases, NH3, C6H5CH3, NO2, and SO2, are reported in detail, and results are included for C6H6, NO, and SiF4. The calibration curves are shown to be linear in a log–log plot over ranges of practical interest. The slopes are reproducible. The technique used in making masks is described. The proposed manner of making measurements involves the use of a small reference cell containing a sample of the gas being measured. When such a method of measurement is used, several gases of practical importance are concluded to be determined as to concentration to a few parts per billion with a precision of 10% or less, if path lengths of the order of several hundred meters are used. The results appear to be independent of the presence of unknown absorbing gases under many circumstances.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Murk Bottema, William Plummer, John Strong, Astrophys. J. 139, 1021 (1964).
    [CrossRef]
  2. Murk Bottema, William Plummer, John Strong, Rodolphe Zander, Astrophys. J. 140, 1940 (1964).
    [CrossRef]
  3. A. R. Barringer, B. C. Newbury, “Molecular Correlation Spectrometer for Sensing Gaseous Pollutants.” Paper 67/196 in the 60th Annual Air Pollution Control Association Meeting.
  4. R. B. Kay, Appl. Opt. 6, 776 (1967).
    [CrossRef] [PubMed]
  5. A. E. S. Green, Ed. The Middle Ultraviolet: Its Science and Technology (John Wiley & Sons, Inc., New York, 1966).

1967 (1)

1964 (2)

Murk Bottema, William Plummer, John Strong, Astrophys. J. 139, 1021 (1964).
[CrossRef]

Murk Bottema, William Plummer, John Strong, Rodolphe Zander, Astrophys. J. 140, 1940 (1964).
[CrossRef]

Barringer, A. R.

A. R. Barringer, B. C. Newbury, “Molecular Correlation Spectrometer for Sensing Gaseous Pollutants.” Paper 67/196 in the 60th Annual Air Pollution Control Association Meeting.

Bottema, Murk

Murk Bottema, William Plummer, John Strong, Astrophys. J. 139, 1021 (1964).
[CrossRef]

Murk Bottema, William Plummer, John Strong, Rodolphe Zander, Astrophys. J. 140, 1940 (1964).
[CrossRef]

Kay, R. B.

Newbury, B. C.

A. R. Barringer, B. C. Newbury, “Molecular Correlation Spectrometer for Sensing Gaseous Pollutants.” Paper 67/196 in the 60th Annual Air Pollution Control Association Meeting.

Plummer, William

Murk Bottema, William Plummer, John Strong, Astrophys. J. 139, 1021 (1964).
[CrossRef]

Murk Bottema, William Plummer, John Strong, Rodolphe Zander, Astrophys. J. 140, 1940 (1964).
[CrossRef]

Strong, John

Murk Bottema, William Plummer, John Strong, Rodolphe Zander, Astrophys. J. 140, 1940 (1964).
[CrossRef]

Murk Bottema, William Plummer, John Strong, Astrophys. J. 139, 1021 (1964).
[CrossRef]

Zander, Rodolphe

Murk Bottema, William Plummer, John Strong, Rodolphe Zander, Astrophys. J. 140, 1940 (1964).
[CrossRef]

Appl. Opt. (1)

Astrophys. J. (2)

Murk Bottema, William Plummer, John Strong, Astrophys. J. 139, 1021 (1964).
[CrossRef]

Murk Bottema, William Plummer, John Strong, Rodolphe Zander, Astrophys. J. 140, 1940 (1964).
[CrossRef]

Other (2)

A. R. Barringer, B. C. Newbury, “Molecular Correlation Spectrometer for Sensing Gaseous Pollutants.” Paper 67/196 in the 60th Annual Air Pollution Control Association Meeting.

A. E. S. Green, Ed. The Middle Ultraviolet: Its Science and Technology (John Wiley & Sons, Inc., New York, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Photometer trace of the ammonia absorption spectrum in the region 1909–2203 Å. Nominal center, marked by an asterisk, was at 2067 Å.

Fig. 2
Fig. 2

Absorption spectrum of nitrogen dioxide in the region 4243–4478 Å.

Fig. 3
Fig. 3

Photometer trace of the nitrogen dioxide absorption spectrum in the region 4253–4503 Å. Nominal center, marked by an asterisk, was at 4380 Å.

Fig. 4
Fig. 4

Mask for nitrogen dioxide. The spectral range is 4243–4478 Å. Nominal center, marked by an asterisk, was at 4380 Å.

Fig. 5
Fig. 5

Sketch of the oscillator.

Fig. 6
Fig. 6

Calibration curve for the ammonia mask.

Fig. 7
Fig. 7

Photometer trace of the toluene absorption spectrum in the region 2443–2713 Å. The zero intensity is well off the figure. Nominal center, marked by an asterisk, was at 2625 Å.

Fig. 8
Fig. 8

Photometer trace of the benzene absorption spectrum in the region 2353–2653 Å. The zero intensity is not shown. Nominal center, marked by an asterisk, was at 2555 Å.

Fig. 9
Fig. 9

Calibration curve for the toluene mask, with and without a reference cell containing benzene in the light path.

Fig. 10
Fig. 10

Calibration curve for the sulfur dioxide mask.

Fig. 11
Fig. 11

Calibration curve for the nitrogen dioxide mask.

Tables (1)

Tables Icon

Table I Summary of Results of Studies of Mask Spectrophotometry Done at the University of Florida

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

I λ = I 0 exp ( - K λ c L ) ,
S 0 = n I 0 .
S = n I 0 exp ( - k c L ) .
c L = ( 1 / K ) ln ( S 0 / S ) = ( 1 / K ) ln [ 1 + ( S 0 - S ) / S ] .
k = k ( λ c ) + ( d k d λ ) c λ a sin ω t + 1 2 ( d 2 k d λ 2 ) c λ a 2 sin ω t + ,
exp ( - k c L ) d t exp [ - k ( λ c ) c L ] × [ 1 + ( d k d λ ) c λ a ( sin ω t ) c L ] d t exp [ - k ( λ c ) c L ] × 1 ω [ ω t - ( d k d λ ) c λ a ( cos ω t ) c L ] .
F = exp [ - k ( λ c ) c L ] 1 ω [ - ( d k d λ ) c λ a ( cos ω t ) c L ] 0 π / ω exp [ - k ( λ c ) c L ] 1 ω [ ω t - ( d k d λ ) c λ a ( cos ω t ) c L ] 0 2 π / ω = ( 1 / π ) ( d k / d λ ) c λ a c L .
Δ V V = [ 0 π / ω exp ( - k c L ) d t 0 2 π / ω exp ( - k c L ) d t ] λ ¯ = λ c - [ 0 π / ω exp ( - k c L ) d t 0 2 π / ω exp ( - k c L ) d t ] λ ¯ = λ c
d ( log Δ v / v ) d ( log c L )
Δ V V = { i α i I 0 i [ 0 π / ω exp ( - k i c L ) d t ] - i α i I 0 i [ 0 π / ω exp ( - k i c L ) d t ] } ÷ [ i α i I 0 i 0 2 π / ω exp ( - k i c L ) d t ] .
Δ V V = [ 2 α i 0 I 0 i ( d k i d λ ) λ a c L exp ( - k i c L ) - 2 α i I 0 i ( d k i d λ ) × λ a c L exp ( - k i c L ) α i I 0 i 2 π exp ( - k i c L ) ]
V = α i I 0 i exp ( - k i c L ) 2 π / ω ,
Δ V V α 1 I 01 exp ( - k 1 c L ) ( 2 ω ) ( d k 1 / d λ ) λ a c L α 2 I 02 exp ( - k 2 c L ) 2 π / ω = ( R 0 / π ) exp [ k 2 - k 1 c L ] ( d k 1 / d λ ) λ a c L .
d ( log Δ V / V ) d ( log c L ) = 1 + ( k 2 - k 1 ) c L ,
d ( log c L ) d ( log Δ V / V ) = 1 1 - ( k 1 - k 2 ) c L .
Δ V V = 1 π exp ( k 2 c L ) [ C ω 2 α 2 I 02 + R 0 exp ( - k 1 c L ) d k 1 d λ c L ] .
log c L log Δ V / V 1 k 2 c L .
log ( c L + c 0 L 0 ) - log c L = K A [ log ( Δ V / V ) 0 - log ( Δ V / V ) ] .
1 + c 0 L 0 / c L = [ ( Δ V / V 0 ) / ( Δ V / V ) ] K A ,
c = c 0 L 0 L [ 1 ( Δ V / V ) 0 / ( Δ V / V ) K A - 1 ]
c L = c 0 L 0 / { [ ( Δ V / V ) 0 / ( Δ V / V ) ] 2.3 - 1 } = 10 - 4 [ ( 250 / 220 ) 2.3 - 1 ] ,

Metrics