Abstract

Data in the literature on the spectral emissivity of carbon and graphite show a great divergence, ranging from 0.75 to 0.99 in the visible region. A new determination has been undertaken at a number of wavelengths using an integrating sphere and modulated light. Emissivities ranging from 0.99 in the visible to 0.96 at 0.28 μ and 1.7 μ have been found for several different graphite anodes; the values for lampblack anodes are about 0.005 lower. There is a good agreement with the highest values thus far published. Most of the literature data on the spectral radiance of the anode are consistent with the emissivities found by the present author.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Euler, Ann. Physik 11, 203 (1953).
    [Crossref]
  2. M. R. Null, W. W. Lozier, J. Appl. Phys. 29, 1605 (1958).
    [Crossref]
  3. M. R. Null, W. W. Lozier, J. Opt. Soc. Am. 52, 1156 (1962).
    [Crossref]
  4. M. R. Null, W. W. Lozier, NASA Publication SP–31 “Measurement of Thermal Radiation Properties of Solids,” Joseph C. Richmond, Ed. (1963) p. 535–539; “Research and Development on Advanced Graphite Materials,” Volume XXI. Carbon Arc Image Furnace Studies of Graphite. Tech. Doc. Rept. No. WADD–TR–61–72 Vol. XXI. (1963).
  5. H. Magdeburg, Z. Naturforsch. 20a, 980 (1965).
  6. H. Magdeburg, U. Schley, Z. Angew. Phys. 20, 465 (1966).
  7. H. Magdeburg, Thesis 1966Freie Universität Berlin.
  8. N. K. Chaney, V. C. Hamister, S. W. Glass, Trans. Electrochem. Soc. 67, 201 (1935).
    [Crossref]
  9. C. Krijgsman, Thesis 1938Utrecht.
  10. H. G. MacPherson, J. Opt. Soc. Am. 30, 189 (1940).
    [Crossref]
  11. D. M. Packer, C. Lock, J. Opt. Soc. Am. 42, 879 (1952).
  12. J. P. Mehltretter, Thesis 1962Heidelberg.
  13. A. T. Hattenburg, Appl. Opt. 6, 95 (1967).
    [Crossref] [PubMed]

1967 (1)

1966 (1)

H. Magdeburg, U. Schley, Z. Angew. Phys. 20, 465 (1966).

1965 (1)

H. Magdeburg, Z. Naturforsch. 20a, 980 (1965).

1962 (1)

1958 (1)

M. R. Null, W. W. Lozier, J. Appl. Phys. 29, 1605 (1958).
[Crossref]

1953 (1)

J. Euler, Ann. Physik 11, 203 (1953).
[Crossref]

1952 (1)

D. M. Packer, C. Lock, J. Opt. Soc. Am. 42, 879 (1952).

1940 (1)

1935 (1)

N. K. Chaney, V. C. Hamister, S. W. Glass, Trans. Electrochem. Soc. 67, 201 (1935).
[Crossref]

Chaney, N. K.

N. K. Chaney, V. C. Hamister, S. W. Glass, Trans. Electrochem. Soc. 67, 201 (1935).
[Crossref]

Euler, J.

J. Euler, Ann. Physik 11, 203 (1953).
[Crossref]

Glass, S. W.

N. K. Chaney, V. C. Hamister, S. W. Glass, Trans. Electrochem. Soc. 67, 201 (1935).
[Crossref]

Hamister, V. C.

N. K. Chaney, V. C. Hamister, S. W. Glass, Trans. Electrochem. Soc. 67, 201 (1935).
[Crossref]

Hattenburg, A. T.

Krijgsman, C.

C. Krijgsman, Thesis 1938Utrecht.

Lock, C.

D. M. Packer, C. Lock, J. Opt. Soc. Am. 42, 879 (1952).

Lozier, W. W.

M. R. Null, W. W. Lozier, J. Opt. Soc. Am. 52, 1156 (1962).
[Crossref]

M. R. Null, W. W. Lozier, J. Appl. Phys. 29, 1605 (1958).
[Crossref]

M. R. Null, W. W. Lozier, NASA Publication SP–31 “Measurement of Thermal Radiation Properties of Solids,” Joseph C. Richmond, Ed. (1963) p. 535–539; “Research and Development on Advanced Graphite Materials,” Volume XXI. Carbon Arc Image Furnace Studies of Graphite. Tech. Doc. Rept. No. WADD–TR–61–72 Vol. XXI. (1963).

MacPherson, H. G.

Magdeburg, H.

H. Magdeburg, U. Schley, Z. Angew. Phys. 20, 465 (1966).

H. Magdeburg, Z. Naturforsch. 20a, 980 (1965).

H. Magdeburg, Thesis 1966Freie Universität Berlin.

Mehltretter, J. P.

J. P. Mehltretter, Thesis 1962Heidelberg.

Null, M. R.

M. R. Null, W. W. Lozier, J. Opt. Soc. Am. 52, 1156 (1962).
[Crossref]

M. R. Null, W. W. Lozier, J. Appl. Phys. 29, 1605 (1958).
[Crossref]

M. R. Null, W. W. Lozier, NASA Publication SP–31 “Measurement of Thermal Radiation Properties of Solids,” Joseph C. Richmond, Ed. (1963) p. 535–539; “Research and Development on Advanced Graphite Materials,” Volume XXI. Carbon Arc Image Furnace Studies of Graphite. Tech. Doc. Rept. No. WADD–TR–61–72 Vol. XXI. (1963).

Packer, D. M.

D. M. Packer, C. Lock, J. Opt. Soc. Am. 42, 879 (1952).

Schley, U.

H. Magdeburg, U. Schley, Z. Angew. Phys. 20, 465 (1966).

Ann. Physik (1)

J. Euler, Ann. Physik 11, 203 (1953).
[Crossref]

Appl. Opt. (1)

J. Appl. Phys. (1)

M. R. Null, W. W. Lozier, J. Appl. Phys. 29, 1605 (1958).
[Crossref]

J. Opt. Soc. Am. (3)

Trans. Electrochem. Soc. (1)

N. K. Chaney, V. C. Hamister, S. W. Glass, Trans. Electrochem. Soc. 67, 201 (1935).
[Crossref]

Z. Angew. Phys. (1)

H. Magdeburg, U. Schley, Z. Angew. Phys. 20, 465 (1966).

Z. Naturforsch. (1)

H. Magdeburg, Z. Naturforsch. 20a, 980 (1965).

Other (4)

J. P. Mehltretter, Thesis 1962Heidelberg.

H. Magdeburg, Thesis 1966Freie Universität Berlin.

C. Krijgsman, Thesis 1938Utrecht.

M. R. Null, W. W. Lozier, NASA Publication SP–31 “Measurement of Thermal Radiation Properties of Solids,” Joseph C. Richmond, Ed. (1963) p. 535–539; “Research and Development on Advanced Graphite Materials,” Volume XXI. Carbon Arc Image Furnace Studies of Graphite. Tech. Doc. Rept. No. WADD–TR–61–72 Vol. XXI. (1963).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Reflectivity of carbon anodes. — Euler1 (RW II lampblack anode); --- Magdebulg6,7 (RW II); ⊡, ⊗, ⊙ Null and Lozier4 (⊡ L113SP, lampblack; ⊗ SPK, graphite; ⊙ AGKSP, graphite).

Fig. 2
Fig. 2

Arrangement for reflectivity measurements.

Fig. 3
Fig. 3

Spectral reflectivity of graphite anode at arc temperature. + and — present data, Δ, after Null and Lozier4 (mean of values for SPK and AGKSP). The dark band at the bottom represents the rms error.

Fig. 4
Fig. 4

Spectral reflectivity of cold RWI anode. The dark band at the bottom represents the rms error.

Tables (3)

Tables Icon

Table I Data of the Anodes

Tables Icon

Table II True Temperature of Some Anodes

Tables Icon

Table III Comparison of the Values Presented in Table II With the True Temperature Calculated from the Present Emissivities and Literature Data on the Spectral Radiance

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ρ ( λ ) + α ( λ ) + τ ( λ ) = 1 ,
α ( λ ) = ( λ ) ,
N ( T ) = C 1 λ 5 1 exp ( c 2 / λ T ) - 1
Δ N N = 1 1 - exp ( - c 2 / λ T ) c 2 λ T Δ T T
( Δ N / N ) = ( c 2 / λ T ) ( Δ T / T ) ,

Metrics