Abstract

An improved geometry for coupling a beam into a photomultiplier with total internal reflection sensitivity enhancement is described which allows this technique to be used with large sized beams. The equations giving the increase of the photocathode’s absorption efficiency by the use of internal reflection within the window are discussed and conditions for best performance specified. The calculations, based on modifications of experimentally verified equations employed in internal reflection spectroscopy, predict that cathodes only a few monolayers thick could be made to absorb almost all the light falling on them in very few reflections. It then is shown that this will result in high quantum efficiencies with a much reduced spectral dependence. Particularly high increases may be expected for the less efficient cathodes such as S–1. The procedure is shown to relax the requirements on electron escape depth and absorption coefficient of the cathode material so much that the range of possible materials is considerably enlarged. Also, surface and defect level photoemitters will become practical. This and the change of work function with material thickness raise the possibility of extending the region of operation of photomultipliers more into the ir. Photomultipliers so built could also show a higher frequency response to modulated light beams. Finally, means of reducing the dark current and obtaining the multiplex gain in these photomultipliers are discussed.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. D. Gunther, E. F. Erickson, G. R. Grant, Appl. Opt. 4, 512 (1965).
    [Crossref]
  2. B. E. Rambo, Air Force Tech. Doc. Rept. ALTDR64–19 (1964).
  3. G. R. Grant, W. D. Gunther, Rev. Sci. Instr. 36, 1511 (1965).
    [Crossref]
  4. J. R. Sizelove, J. A. Love, Appl. Opt. 6, 443 (1967).
    [Crossref] [PubMed]
  5. K. R. Crowe, J. Gumnick, D. A. Wilcox, Tech. Rept. AFAL–TR–66–199 (1966).
  6. H. Hora, R. Kantlehner, Solid State Commun. 4, 557 (1966).
    [Crossref]
  7. T. Hirschfeld, Appl. Opt. 5, 1337 (1966).
    [Crossref] [PubMed]
  8. N. Harrick, J. Opt. Soc. Am. 55, 851 (1965).
    [Crossref]
  9. N. Harrick, F. K. DuPré, Appl. Opt. 5, 1739 (1966).
    [Crossref] [PubMed]
  10. W. N. Hansen, J. Opt. Soc. Am. 58, 380 (1968).
    [Crossref]
  11. T. Hirschfeld, Appl. Opt. 6, 715 (1967).
    [Crossref] [PubMed]
  12. A. H. Sommer, W. E. Spicer, in Photoelectronic Materials and Devices, S. Larach, Ed. (D. Van Nostrand Company, Inc., Princeton, 1965), p. 175.
  13. A. F. Turner, P. H. Berning, J. Opt. Soc. Am. 45, 408A (1955).
  14. F. Berz, Brit. J. Appl. Phys. 16, 1733 (1965).
    [Crossref]
  15. N. J. Harrick, A. F. Turner, J. Opt. Soc. Am. 56, 553A (1966).
  16. N. J. Seachman, Appl. Opt. 6, 356 (1967).
    [Crossref] [PubMed]
  17. W. E. Spicer, RCA Rev. 19, 555 (1958).
  18. R. Garron, Thesis, University of Marseille, 1964.
  19. F. J. Piepenbring, in Proceedings of the International Colloquium on Optical Properties and Electronic Structure of Metals and Alloys, (North-Holland Publishing Co., Amsterdam, 1966), p. 316.
  20. W. N. Hansen, North American Aviation Science Center, Thousand Oaks, California, private communication.
  21. G. Farkas, P. Varga, J. Sci. Instr. 41, 704 (1964).
    [Crossref]
  22. N. J. Harrick, Appl. Opt. 5, 1236 (1966).
    [Crossref] [PubMed]
  23. W. C. Livingston, Appl. Opt. 5, 1335 (1966).
    [Crossref] [PubMed]

1968 (1)

1967 (3)

1966 (6)

1965 (4)

N. Harrick, J. Opt. Soc. Am. 55, 851 (1965).
[Crossref]

W. D. Gunther, E. F. Erickson, G. R. Grant, Appl. Opt. 4, 512 (1965).
[Crossref]

G. R. Grant, W. D. Gunther, Rev. Sci. Instr. 36, 1511 (1965).
[Crossref]

F. Berz, Brit. J. Appl. Phys. 16, 1733 (1965).
[Crossref]

1964 (1)

G. Farkas, P. Varga, J. Sci. Instr. 41, 704 (1964).
[Crossref]

1958 (1)

W. E. Spicer, RCA Rev. 19, 555 (1958).

1955 (1)

A. F. Turner, P. H. Berning, J. Opt. Soc. Am. 45, 408A (1955).

Berning, P. H.

A. F. Turner, P. H. Berning, J. Opt. Soc. Am. 45, 408A (1955).

Berz, F.

F. Berz, Brit. J. Appl. Phys. 16, 1733 (1965).
[Crossref]

Crowe, K. R.

K. R. Crowe, J. Gumnick, D. A. Wilcox, Tech. Rept. AFAL–TR–66–199 (1966).

DuPré, F. K.

Erickson, E. F.

Farkas, G.

G. Farkas, P. Varga, J. Sci. Instr. 41, 704 (1964).
[Crossref]

Garron, R.

R. Garron, Thesis, University of Marseille, 1964.

Grant, G. R.

W. D. Gunther, E. F. Erickson, G. R. Grant, Appl. Opt. 4, 512 (1965).
[Crossref]

G. R. Grant, W. D. Gunther, Rev. Sci. Instr. 36, 1511 (1965).
[Crossref]

Gumnick, J.

K. R. Crowe, J. Gumnick, D. A. Wilcox, Tech. Rept. AFAL–TR–66–199 (1966).

Gunther, W. D.

W. D. Gunther, E. F. Erickson, G. R. Grant, Appl. Opt. 4, 512 (1965).
[Crossref]

G. R. Grant, W. D. Gunther, Rev. Sci. Instr. 36, 1511 (1965).
[Crossref]

Hansen, W. N.

W. N. Hansen, J. Opt. Soc. Am. 58, 380 (1968).
[Crossref]

W. N. Hansen, North American Aviation Science Center, Thousand Oaks, California, private communication.

Harrick, N.

Harrick, N. J.

N. J. Harrick, Appl. Opt. 5, 1236 (1966).
[Crossref] [PubMed]

N. J. Harrick, A. F. Turner, J. Opt. Soc. Am. 56, 553A (1966).

Hirschfeld, T.

Hora, H.

H. Hora, R. Kantlehner, Solid State Commun. 4, 557 (1966).
[Crossref]

Kantlehner, R.

H. Hora, R. Kantlehner, Solid State Commun. 4, 557 (1966).
[Crossref]

Livingston, W. C.

Love, J. A.

Piepenbring, F. J.

F. J. Piepenbring, in Proceedings of the International Colloquium on Optical Properties and Electronic Structure of Metals and Alloys, (North-Holland Publishing Co., Amsterdam, 1966), p. 316.

Rambo, B. E.

B. E. Rambo, Air Force Tech. Doc. Rept. ALTDR64–19 (1964).

Seachman, N. J.

Sizelove, J. R.

Sommer, A. H.

A. H. Sommer, W. E. Spicer, in Photoelectronic Materials and Devices, S. Larach, Ed. (D. Van Nostrand Company, Inc., Princeton, 1965), p. 175.

Spicer, W. E.

W. E. Spicer, RCA Rev. 19, 555 (1958).

A. H. Sommer, W. E. Spicer, in Photoelectronic Materials and Devices, S. Larach, Ed. (D. Van Nostrand Company, Inc., Princeton, 1965), p. 175.

Turner, A. F.

N. J. Harrick, A. F. Turner, J. Opt. Soc. Am. 56, 553A (1966).

A. F. Turner, P. H. Berning, J. Opt. Soc. Am. 45, 408A (1955).

Varga, P.

G. Farkas, P. Varga, J. Sci. Instr. 41, 704 (1964).
[Crossref]

Wilcox, D. A.

K. R. Crowe, J. Gumnick, D. A. Wilcox, Tech. Rept. AFAL–TR–66–199 (1966).

Appl. Opt. (8)

Brit. J. Appl. Phys. (1)

F. Berz, Brit. J. Appl. Phys. 16, 1733 (1965).
[Crossref]

J. Opt. Soc. Am. (4)

N. J. Harrick, A. F. Turner, J. Opt. Soc. Am. 56, 553A (1966).

A. F. Turner, P. H. Berning, J. Opt. Soc. Am. 45, 408A (1955).

W. N. Hansen, J. Opt. Soc. Am. 58, 380 (1968).
[Crossref]

N. Harrick, J. Opt. Soc. Am. 55, 851 (1965).
[Crossref]

J. Sci. Instr. (1)

G. Farkas, P. Varga, J. Sci. Instr. 41, 704 (1964).
[Crossref]

RCA Rev. (1)

W. E. Spicer, RCA Rev. 19, 555 (1958).

Rev. Sci. Instr. (1)

G. R. Grant, W. D. Gunther, Rev. Sci. Instr. 36, 1511 (1965).
[Crossref]

Solid State Commun. (1)

H. Hora, R. Kantlehner, Solid State Commun. 4, 557 (1966).
[Crossref]

Other (6)

K. R. Crowe, J. Gumnick, D. A. Wilcox, Tech. Rept. AFAL–TR–66–199 (1966).

B. E. Rambo, Air Force Tech. Doc. Rept. ALTDR64–19 (1964).

R. Garron, Thesis, University of Marseille, 1964.

F. J. Piepenbring, in Proceedings of the International Colloquium on Optical Properties and Electronic Structure of Metals and Alloys, (North-Holland Publishing Co., Amsterdam, 1966), p. 316.

W. N. Hansen, North American Aviation Science Center, Thousand Oaks, California, private communication.

A. H. Sommer, W. E. Spicer, in Photoelectronic Materials and Devices, S. Larach, Ed. (D. Van Nostrand Company, Inc., Princeton, 1965), p. 175.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Entrance optics for photomultiplier with total internal reflection sensitivity enhancement.

Fig. 2
Fig. 2

Relation of entrance face and window sizes for a four-reflection system.

Fig. 3
Fig. 3

Critical and optimum incidence angles as a function of window index.

Fig. 4
Fig. 4

Absorption enhancement as a function of window index.

Fig. 5
Fig. 5

Maximum field of view and mean incidence angle as a function of the window index.

Fig. 6
Fig. 6

Enhancement for s polarized light at maximum field of view as a function of the window index.

Fig. 7
Fig. 7

Enhancement as a function of angle for n1 = 2 and n2 = 3.

Fig. 8
Fig. 8

Absorption enhancement for p polarization at maximum aperture as a function of window index.

Fig. 9
Fig. 9

Enhancement in absorption by a photocathode using a λ/4 cryolite interlayer as a function of prism index.

Fig. 10
Fig. 10

Multiple internal reflection unipoint system.

Fig. 11
Fig. 11

Multiple internal reflection uniline system.

Fig. 12
Fig. 12

Double internal reflection imaging systems. 1—prism, 2—mirror, and 3—photocathode.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

l = D / 2 z tan θ ,
W = 2 w cos θ ,
Δ θ = 2 arctan [ sin ( Δ θ / 2 ) n 1 ] ,
W = w 2 tan θ / 2 tan ( θ + Δ θ / 2 ) - tan θ / 2 .
W = D z tan ( θ - Δ θ / 2 ) tan θ .
W D = 2 z tan ( θ - Δ θ / 2 ) tan θ tan θ / 2 tan ( θ + Δ θ / 2 ) - tan θ / 2 ,
W / D = ( 2 / z ) cos θ .
A = ( 4 π / 2.303 ) d e ( k n 2 / λ ) ,
( d e s / d ) = ( 4 n 2 n 1 cos θ ) / ( n 1 2 - 1 ) ;
( d e p / d ) = 4 n 2 n 1 3 cos θ [ sin 2 θ ( 1 + 1 / n 2 4 ) - 1 / n 1 2 ] sin 2 θ ( n 1 4 - 1 ) - n 1 2 + 1 .
( d e p / d ) = 4 n 2 n 1 3 cos θ ( sin 2 θ - 1 / n 1 2 ) sin 2 θ ( n 1 4 - 1 ) - n 1 2 + 1 .
θ c = arcsin ( 1 / n 1 ) ,
θ M = arcsin ( ( 2 n 1 2 - 3 + 1 / n 1 2 + ( ( 2 n 1 2 - 3 ) + 1 / n 1 2 ) 2 + 4 ( n 1 4 - 1 ) ( 1 - 1 / n 1 2 ) ) 1 2 2 ( n 1 4 - 1 ) ) 1 2 .
Δ θ = 2 arcsin [ ( n 1 2 - n 1 ) / 2 ] 1 2 .
( d e s / d ) θ c = 4 n 2 / ( n 1 2 - 1 ) 1 2 ,
( d e s / d ¯ ) Δ θ max = 4 n 2 ( n 1 + 1 ) ( π / 2 - arcsin 1 / n 1 )
( d e s / d ¯ ) Δ θ = 180° = 4 n 2 ( n 1 2 - 2 ) n 1 2 ( n 1 2 - 1 ) arcsin 1 / n ,
( d e p / d ¯ ) = 1 2 ( d e p / d ¯ ) θ M { 1 - ( 90° - θ max ) 2 / [ ( 90° - θ M ) ( 90° - θ c ) ] } ,
( d e s layer ) / ( d e s initial ) = ( n 1 2 - 1 ) / ( n 2 L - 1 ) ,

Metrics