Abstract

Image forming properties for four lens pairs of asymmetrical wide angle lenses are described with reference to Seidel Pegel diagrams. The comparative system analysis in the Seidel range is augmented by graphic representations of trigonometrically determined selected image aberrations, in order to demonstrate a correspondence between analytical aberration theory and actual aberrations. References to older systems of interesting lens types show the different principles used for the older designs in comparison with those for the newer integrated systems.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kingslake, J. Soc. Motion Picture Television Engrs. 75, 203 (1966).
  2. M. Berek, Grundlagen der praktischen Optik (Walter de Gruyter & Co., Leipzig, 1930), pp. 41–71.
  3. H. Slevogt, Optik 8, 63, 180, 369, 537 (1951).
  4. G. Franke, Photographische Optik (Akademische Verlag Gesellschaft, Frankfurt, 1964), pp. 107–123.
  5. J. Kross, Optik 25, 140 (1967).
  6. Ref. 4, pp. 5–16.

1967 (1)

J. Kross, Optik 25, 140 (1967).

1966 (1)

R. Kingslake, J. Soc. Motion Picture Television Engrs. 75, 203 (1966).

1951 (1)

H. Slevogt, Optik 8, 63, 180, 369, 537 (1951).

Berek, M.

M. Berek, Grundlagen der praktischen Optik (Walter de Gruyter & Co., Leipzig, 1930), pp. 41–71.

Franke, G.

G. Franke, Photographische Optik (Akademische Verlag Gesellschaft, Frankfurt, 1964), pp. 107–123.

Kingslake, R.

R. Kingslake, J. Soc. Motion Picture Television Engrs. 75, 203 (1966).

Kross, J.

J. Kross, Optik 25, 140 (1967).

Slevogt, H.

H. Slevogt, Optik 8, 63, 180, 369, 537 (1951).

J. Soc. Motion Picture Television Engrs. (1)

R. Kingslake, J. Soc. Motion Picture Television Engrs. 75, 203 (1966).

Optik (2)

H. Slevogt, Optik 8, 63, 180, 369, 537 (1951).

J. Kross, Optik 25, 140 (1967).

Other (3)

Ref. 4, pp. 5–16.

G. Franke, Photographische Optik (Akademische Verlag Gesellschaft, Frankfurt, 1964), pp. 107–123.

M. Berek, Grundlagen der praktischen Optik (Walter de Gruyter & Co., Leipzig, 1930), pp. 41–71.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Example 1 (DBP 953 471). Seidel Pegel diagrams for the focal length f = 1 (elucidations in the text).

Fig. 2
Fig. 2

Example 2 (DBP 1 044 440). Seidel Pegel diagrams for f = 1.

Fig. 3
Fig. 3

Trigonometrical and Seidel aberration curves for spherical aberration, deviation from the isoplanasic condition, and sagittal and tangential field curvatures. Left are the curves for example 3, right for example 4. At the top, above the squared incident height, longitudinal spherical aberration Δs′ (in % of the focal length) and deviation from the isoplanasic condition ΔJso (in %) are represented as ordinates (numbered in f numbers). The trigonometrical aberrations are drawn in heavy lines, continuous and broken, the Seidel aberrations in thin lines, — · — · — and broken. At the bottom, above the tangent of the front angular field w1, the sagittal and tangential field curvatures (as ordinates) are plotted Δa′ (in % of the focal length). The trigonometrical aberrations are drawn in heavy lines, continuous and broken, the Seidel aberrations in thin lines, continuous and broken.

Fig. 4
Fig. 4

Equal aberration representation as in Fig. 3 for the examples 5 (left) and 6 (right).

Fig. 5
Fig. 5

Equal aberration representation as in Fig. 3 for the examples 7 (left) and 8 (right).

Fig. 6
Fig. 6

Equal aberration representation as in Fig. 3 for the examples 9 (left) and 10 (right).

Fig. 7
Fig. 7

Example 3 (Swiss Pat. 420 658). Seidel Pegel diagrams for f = 1.

Fig. 8
Fig. 8

Example 4 (German patent application Sch 31 920). Seidel Pegel diagrams for f = 1.

Fig. 9
Fig. 9

Example 5 (Swiss Pat. 420 658). Seidel Pegel diagrams for f = 1.

Fig. 10
Fig. 10

Example 6 (German patent application Sch 38 567). Seidel Pegel diagrams for f = 1.

Fig. 11
Fig. 11

Example 7 (German patent application Sch 39 720). Seidel Pegel diagrams for f = 1.

Fig. 12
Fig. 12

Example 8 (Swiss Pat. 420 658). Seidel Pegel diagrams for f = 1.

Fig. 13
Fig. 13

Example 9 (German patent application Sch 39 720). Seidel Pegel diagrams for f = 1.

Fig. 14
Fig. 14

Example 10 (DBP 1 192 845). Seidel Pegel diagrams for f = 1.

Fig. 15
Fig. 15

Trigonometrical and Seidel aberration curves for distortion. At the top are the curves for the examples 3, 5, 7, and 9, at the bottom for examples 4, 6, 8, and 10 in this order from left to right. As a function of the tangent of the front angular field w1 (as ordinate), the trigonometrical values are plotted with a continuous line, the Seidel ones with a broken line. The values V on the x axis indicate the distortion as a percentage.

Tables (1)

Tables Icon

Table I Some Characteristic Data of the Lens Examples a

Metrics