Abstract

The optical design of a mirror telescope with a free aperture of 3.5 m is described. Observations can be made in the Cassegrain (RC) focus f/8, in the direct focus f/3, and in the coudé focus f/30. The results of ray tracing in the form of spot diagrams are dealt with. Some technological problems are discussed.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. S. Bowen, Publ. Astron. Soc. Pacific 73, 114 (1961).
    [CrossRef]
  2. H. Köhler, Astron. Nachr. 278, 1 (1949).
    [CrossRef]
  3. H. Slevogt, Z. Instrumentenk. 62, 312 (1942).
  4. K. Schwarzschild, “Untersuchungen zur geometrischen Optik,” Teil II (Theorie der Spiegelteleskope) Göttingen Abhandlungen, Nr. 2 (1965).
  5. H. Chrétien, Rev. Optique 1, 13, 49 (1927).
  6. G. W. Ritchey, H. C. Chrétien, Bull. Soc. Astron. France 41, 541, (1927).
  7. G. W. Ritchey, Bull. Soc. Astron. France 41, 529 (1927); Bull. Soc. Astron. France 42, 27, (1928); Compt. Rend. 185, 266, 1024 (1927); Compt. Rend. 191, 22 (1930); Trans. Opt. Soc. 29, 197, (1927); J. Roy. Astron. Soc. Can. 22, 159 (1928).
  8. G. W. Ritchey, “L’évolution de l’astrophotographie,” St. Gobain, 1930.
  9. M. Paul, Rev. Optique 14, 169 (1935).
  10. H. Theissing, O. Zinke, Optik 3, 451 (1948).
  11. F. E. Ross, Astrophys. J. 81, 156 (1935).
    [CrossRef]
  12. J. Lagrula, Rev. Opt. 21, 141, (1942).
  13. A. Sonnefeld, H. Slevogt, Deutsches Bundespatent Nr. 906 153 (angemeldet November6, 1942).
  14. C. G. Wynne, Proc. Phys. Soc. B62, 772 (1949).
  15. A. B. Meinel, Astrophys. J. 18, 335 (1953).
    [CrossRef]
  16. E. Glatzel, Optik 18, 577 (1961).
  17. E. Glatzel, in Proceedings of the Conference on Lens Design with Large Computers (Institute of Optics, Rochester, 1967).
  18. R. Wilson, in Proceedings of the Conference on Lens Design with Large Computers (Institute of Optics, Rochester, 1967).
  19. D. H. Schulte, Appl. Opt. 5, 309 (1966).
    [CrossRef] [PubMed]
  20. D. H. Schulte, Appl. Opt. 5, 313 (1966).
    [CrossRef] [PubMed]
  21. C. G. Wynne, Appl. Opt. 4, 1185 (1965).
    [CrossRef]
  22. E. Glatzel, R. Wilson, Appl. Opt. 7, 265 (1968).
    [CrossRef] [PubMed]

1968 (1)

1966 (2)

1965 (2)

C. G. Wynne, Appl. Opt. 4, 1185 (1965).
[CrossRef]

K. Schwarzschild, “Untersuchungen zur geometrischen Optik,” Teil II (Theorie der Spiegelteleskope) Göttingen Abhandlungen, Nr. 2 (1965).

1961 (2)

I. S. Bowen, Publ. Astron. Soc. Pacific 73, 114 (1961).
[CrossRef]

E. Glatzel, Optik 18, 577 (1961).

1953 (1)

A. B. Meinel, Astrophys. J. 18, 335 (1953).
[CrossRef]

1949 (2)

C. G. Wynne, Proc. Phys. Soc. B62, 772 (1949).

H. Köhler, Astron. Nachr. 278, 1 (1949).
[CrossRef]

1948 (1)

H. Theissing, O. Zinke, Optik 3, 451 (1948).

1942 (2)

H. Slevogt, Z. Instrumentenk. 62, 312 (1942).

J. Lagrula, Rev. Opt. 21, 141, (1942).

1935 (2)

M. Paul, Rev. Optique 14, 169 (1935).

F. E. Ross, Astrophys. J. 81, 156 (1935).
[CrossRef]

1927 (3)

H. Chrétien, Rev. Optique 1, 13, 49 (1927).

G. W. Ritchey, H. C. Chrétien, Bull. Soc. Astron. France 41, 541, (1927).

G. W. Ritchey, Bull. Soc. Astron. France 41, 529 (1927); Bull. Soc. Astron. France 42, 27, (1928); Compt. Rend. 185, 266, 1024 (1927); Compt. Rend. 191, 22 (1930); Trans. Opt. Soc. 29, 197, (1927); J. Roy. Astron. Soc. Can. 22, 159 (1928).

Bowen, I. S.

I. S. Bowen, Publ. Astron. Soc. Pacific 73, 114 (1961).
[CrossRef]

Chrétien, H.

H. Chrétien, Rev. Optique 1, 13, 49 (1927).

Chrétien, H. C.

G. W. Ritchey, H. C. Chrétien, Bull. Soc. Astron. France 41, 541, (1927).

Glatzel, E.

E. Glatzel, R. Wilson, Appl. Opt. 7, 265 (1968).
[CrossRef] [PubMed]

E. Glatzel, Optik 18, 577 (1961).

E. Glatzel, in Proceedings of the Conference on Lens Design with Large Computers (Institute of Optics, Rochester, 1967).

Köhler, H.

H. Köhler, Astron. Nachr. 278, 1 (1949).
[CrossRef]

Lagrula, J.

J. Lagrula, Rev. Opt. 21, 141, (1942).

Meinel, A. B.

A. B. Meinel, Astrophys. J. 18, 335 (1953).
[CrossRef]

Paul, M.

M. Paul, Rev. Optique 14, 169 (1935).

Ritchey, G. W.

G. W. Ritchey, Bull. Soc. Astron. France 41, 529 (1927); Bull. Soc. Astron. France 42, 27, (1928); Compt. Rend. 185, 266, 1024 (1927); Compt. Rend. 191, 22 (1930); Trans. Opt. Soc. 29, 197, (1927); J. Roy. Astron. Soc. Can. 22, 159 (1928).

G. W. Ritchey, H. C. Chrétien, Bull. Soc. Astron. France 41, 541, (1927).

G. W. Ritchey, “L’évolution de l’astrophotographie,” St. Gobain, 1930.

Ross, F. E.

F. E. Ross, Astrophys. J. 81, 156 (1935).
[CrossRef]

Schulte, D. H.

Schwarzschild, K.

K. Schwarzschild, “Untersuchungen zur geometrischen Optik,” Teil II (Theorie der Spiegelteleskope) Göttingen Abhandlungen, Nr. 2 (1965).

Slevogt, H.

H. Slevogt, Z. Instrumentenk. 62, 312 (1942).

A. Sonnefeld, H. Slevogt, Deutsches Bundespatent Nr. 906 153 (angemeldet November6, 1942).

Sonnefeld, A.

A. Sonnefeld, H. Slevogt, Deutsches Bundespatent Nr. 906 153 (angemeldet November6, 1942).

Theissing, H.

H. Theissing, O. Zinke, Optik 3, 451 (1948).

Wilson, R.

E. Glatzel, R. Wilson, Appl. Opt. 7, 265 (1968).
[CrossRef] [PubMed]

R. Wilson, in Proceedings of the Conference on Lens Design with Large Computers (Institute of Optics, Rochester, 1967).

Wynne, C. G.

C. G. Wynne, Appl. Opt. 4, 1185 (1965).
[CrossRef]

C. G. Wynne, Proc. Phys. Soc. B62, 772 (1949).

Zinke, O.

H. Theissing, O. Zinke, Optik 3, 451 (1948).

Appl. Opt. (4)

Astron. Nachr. (1)

H. Köhler, Astron. Nachr. 278, 1 (1949).
[CrossRef]

Astrophys. J. (2)

F. E. Ross, Astrophys. J. 81, 156 (1935).
[CrossRef]

A. B. Meinel, Astrophys. J. 18, 335 (1953).
[CrossRef]

Bull. Soc. Astron. France (2)

G. W. Ritchey, H. C. Chrétien, Bull. Soc. Astron. France 41, 541, (1927).

G. W. Ritchey, Bull. Soc. Astron. France 41, 529 (1927); Bull. Soc. Astron. France 42, 27, (1928); Compt. Rend. 185, 266, 1024 (1927); Compt. Rend. 191, 22 (1930); Trans. Opt. Soc. 29, 197, (1927); J. Roy. Astron. Soc. Can. 22, 159 (1928).

Optik (2)

E. Glatzel, Optik 18, 577 (1961).

H. Theissing, O. Zinke, Optik 3, 451 (1948).

Proc. Phys. Soc. (1)

C. G. Wynne, Proc. Phys. Soc. B62, 772 (1949).

Publ. Astron. Soc. Pacific (1)

I. S. Bowen, Publ. Astron. Soc. Pacific 73, 114 (1961).
[CrossRef]

Rev. Opt. (1)

J. Lagrula, Rev. Opt. 21, 141, (1942).

Rev. Optique (2)

H. Chrétien, Rev. Optique 1, 13, 49 (1927).

M. Paul, Rev. Optique 14, 169 (1935).

Teil II (Theorie der Spiegelteleskope) Göttingen Abhandlungen (1)

K. Schwarzschild, “Untersuchungen zur geometrischen Optik,” Teil II (Theorie der Spiegelteleskope) Göttingen Abhandlungen, Nr. 2 (1965).

Z. Instrumentenk. (1)

H. Slevogt, Z. Instrumentenk. 62, 312 (1942).

Other (4)

G. W. Ritchey, “L’évolution de l’astrophotographie,” St. Gobain, 1930.

A. Sonnefeld, H. Slevogt, Deutsches Bundespatent Nr. 906 153 (angemeldet November6, 1942).

E. Glatzel, in Proceedings of the Conference on Lens Design with Large Computers (Institute of Optics, Rochester, 1967).

R. Wilson, in Proceedings of the Conference on Lens Design with Large Computers (Institute of Optics, Rochester, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Some relations relating to aplanatic two-mirror system.

Fig. 2
Fig. 2

Optical layout of the quasi-Cassegrain system f′ = 28.9 m, 1:8.3.

Fig. 3
Fig. 3

Spot diagrams of the quasi-Cassegrain system.

Fig. 4
Fig. 4

State of monochromatic correction of the quasi-Cassegrain system. (The spherical aberration and astigmatism are shown as longitudinal aberrations; the coma is shown as lateral aberration.)

Fig. 5
Fig. 5

The longitudinal chromatic aberration and the astigmatism curves for three different wavelengths. (The wavelengths are: 365:λ = 3650 Å, e:λ = 5461 Å, A′:λ = 7682 Å.)

Fig. 6
Fig. 6

Quasi-Newtonian system with lens doublet corrector (first stage of the development). f′ = 10.35 m, 1:2.96.

Fig. 7
Fig. 7

Quasi-Newtonian system with three aspheric correcting plates (definitive arrangement). f′ = 10.37 m, 1:2.96.

Fig. 8
Fig. 8

Spot diagrams of the quasi-Newtonian system for the axis. (The columns correspond to different wavelengths, the rows to different focus positions for the image plane.)

Fig. 9
Fig. 9

Spot diagrams of the quasi-Newtonian system for a field angle of w = 0.35°.

Fig. 10
Fig. 10

Spot diagrams of the quasi-Newtonian system for the edge of the field (w = 0.5°).

Fig. 11
Fig. 11

The state of correction of the quasi-Newtonian system.

Fig. 12
Fig. 12

Chromatic longitudinal aberration of the quasi-Newtonian system.

Fig. 13
Fig. 13

Coudé system f′ = 105 m, 1:30.

Fig. 14
Fig. 14

State of correction of the coudé system.

Fig. 15
Fig. 15

Spot diagrams of the coudé system.

Tables (2)

Tables Icon

Table I Aberration Coefficients of the Quasi-Cassegrain Systema

Tables Icon

Table II Aberration Coefficients of the Quasi-Newtonian Systema

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

D 1 / D 2 = ( f 1 + f ) / ( f 1 + s 2 ¯ ) ,
x = y 2 / 2 r + ( y 4 / 8 r 3 ) ( 1 + b ) ,
p = ( h 2 / 2 r ) + c 1 ( h 2 / 2 r ) 2 + c 2 ( h 2 / 2 r ) 3 ,
p = ( h 2 / 2 r ) + c 1 ( h 2 / 2 r ) 2 + c 2 ( h 2 / 2 r ) 3 + c 3 ( h 2 / 2 r ) 4 ,

Metrics