Abstract

The chemical bleaching of absorption holograms produces phase holograms that exhibit higher light efficiency than the holograms from which they were produced. The bleaching of thick absorption type hologram diffraction gratings produced at 6328 Å is discussed. The bleached holograms were read out at both 6328 Å and 9100 Å. Ten bleaching materials were tried, of which two were judged acceptable: mercuric chloride and Kodak Chromium Intensifier. Mercuric chloride bleach produced efficiencies of 49% at 9100 Å and 37% at 6328 Å. The experimental results are compared with the maximum theoretical efficiencies by defining a grating efficiency, which is the ratio of the actual hologram efficiency to the intensity transmission of the hologram.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. T. Cathey, J. Opt. Soc. Amer. 55, 457 (1965).
    [CrossRef]
  2. G. L. Rogers, J. Opt. Soc. Amer. 55, 1181 (1965); Proc. Royal Soc. Edinburgh, Sec. A, 63, 193 (1952).
    [CrossRef]
  3. A. A. Friesem, A. Kozma, G. F. Adams, Appl. Opt. 6, 851 (1967).
    [CrossRef] [PubMed]
  4. H. Kogelnik, Proceedings of the Symposium on Modern Optics (Polytechnic Press, Brooklyn, 1967), pp. 605–617.
  5. C. E. K. Mees, T. H. James, The Theory of the Photographic Process (Macmillan Co., New York, 1966).
  6. C. E. K. Mees, The Theory of the Photographic Process (Macmillan Co., New York, 1954).
  7. E. J. Wall, Intensification and Reduction (American Photographic Publishing Co., Boston, 1927).
  8. H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox, in Optical and Electro-Optical Information Processing, J. T. Tippett et al., Eds. (MIT Press, Cambridge, 1965), pp. 1–30.
  9. A. Vander Lugt, R. H. Mitchel, J. Opt. Soc. Amer. 57, 372 (1967).
    [CrossRef]
  10. H. Chapman Jones, Photograph. J. 33, 95 (1893).
  11. H. Chapman Jones, Photograph. J. 30, 40 (1889).
  12. H. Chapman Jones, J. Soc. Chem. Ind. 12, 983 (1893).
  13. N. George, J. W. Matthews, Appl. Phys. Lett. 9, 212 (1966).
    [CrossRef]
  14. N. George, Department of Electrical Engineering, California Institute of Technology, Pasadena, Calif., private communication. (Although not specifically mentioned in Ref. 14, the bleach used for Fig. 3 was chromium intensifier. George tried the prepackaged Kodak chromium intensifier and the mixed type and found the Kodak material superior.)
  15. J. M. Stone, Radiation and Optics (McGraw-Hill Book Company, Inc., New York, 1963).
  16. D. H. R. Vilkomerson, D. I. Bostwick, Appl. Opt. 6, 1270 (1967).
    [CrossRef] [PubMed]
  17. Eastman Kodak Co., Processing Chemicals and Formulas, Sixth Edition, Rochester, New York, 1963.

1967

1966

N. George, J. W. Matthews, Appl. Phys. Lett. 9, 212 (1966).
[CrossRef]

1965

W. T. Cathey, J. Opt. Soc. Amer. 55, 457 (1965).
[CrossRef]

G. L. Rogers, J. Opt. Soc. Amer. 55, 1181 (1965); Proc. Royal Soc. Edinburgh, Sec. A, 63, 193 (1952).
[CrossRef]

1893

H. Chapman Jones, J. Soc. Chem. Ind. 12, 983 (1893).

H. Chapman Jones, Photograph. J. 33, 95 (1893).

1889

H. Chapman Jones, Photograph. J. 30, 40 (1889).

Adams, G. F.

Bostwick, D. I.

Cathey, W. T.

W. T. Cathey, J. Opt. Soc. Amer. 55, 457 (1965).
[CrossRef]

Chapman Jones, H.

H. Chapman Jones, Photograph. J. 33, 95 (1893).

H. Chapman Jones, J. Soc. Chem. Ind. 12, 983 (1893).

H. Chapman Jones, Photograph. J. 30, 40 (1889).

Fleisher, H.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox, in Optical and Electro-Optical Information Processing, J. T. Tippett et al., Eds. (MIT Press, Cambridge, 1965), pp. 1–30.

Friesem, A. A.

George, N.

N. George, J. W. Matthews, Appl. Phys. Lett. 9, 212 (1966).
[CrossRef]

N. George, Department of Electrical Engineering, California Institute of Technology, Pasadena, Calif., private communication. (Although not specifically mentioned in Ref. 14, the bleach used for Fig. 3 was chromium intensifier. George tried the prepackaged Kodak chromium intensifier and the mixed type and found the Kodak material superior.)

James, T. H.

C. E. K. Mees, T. H. James, The Theory of the Photographic Process (Macmillan Co., New York, 1966).

Kogelnik, H.

H. Kogelnik, Proceedings of the Symposium on Modern Optics (Polytechnic Press, Brooklyn, 1967), pp. 605–617.

Kozma, A.

Matthews, J. W.

N. George, J. W. Matthews, Appl. Phys. Lett. 9, 212 (1966).
[CrossRef]

Mees, C. E. K.

C. E. K. Mees, T. H. James, The Theory of the Photographic Process (Macmillan Co., New York, 1966).

C. E. K. Mees, The Theory of the Photographic Process (Macmillan Co., New York, 1954).

Mitchel, R. H.

A. Vander Lugt, R. H. Mitchel, J. Opt. Soc. Amer. 57, 372 (1967).
[CrossRef]

Pengelly, P.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox, in Optical and Electro-Optical Information Processing, J. T. Tippett et al., Eds. (MIT Press, Cambridge, 1965), pp. 1–30.

Reynolds, J.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox, in Optical and Electro-Optical Information Processing, J. T. Tippett et al., Eds. (MIT Press, Cambridge, 1965), pp. 1–30.

Rogers, G. L.

G. L. Rogers, J. Opt. Soc. Amer. 55, 1181 (1965); Proc. Royal Soc. Edinburgh, Sec. A, 63, 193 (1952).
[CrossRef]

Schools, R.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox, in Optical and Electro-Optical Information Processing, J. T. Tippett et al., Eds. (MIT Press, Cambridge, 1965), pp. 1–30.

Sincerbox, G.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox, in Optical and Electro-Optical Information Processing, J. T. Tippett et al., Eds. (MIT Press, Cambridge, 1965), pp. 1–30.

Stone, J. M.

J. M. Stone, Radiation and Optics (McGraw-Hill Book Company, Inc., New York, 1963).

Vander Lugt, A.

A. Vander Lugt, R. H. Mitchel, J. Opt. Soc. Amer. 57, 372 (1967).
[CrossRef]

Vilkomerson, D. H. R.

Wall, E. J.

E. J. Wall, Intensification and Reduction (American Photographic Publishing Co., Boston, 1927).

Appl. Opt.

Appl. Phys. Lett.

N. George, J. W. Matthews, Appl. Phys. Lett. 9, 212 (1966).
[CrossRef]

J. Opt. Soc. Amer.

W. T. Cathey, J. Opt. Soc. Amer. 55, 457 (1965).
[CrossRef]

G. L. Rogers, J. Opt. Soc. Amer. 55, 1181 (1965); Proc. Royal Soc. Edinburgh, Sec. A, 63, 193 (1952).
[CrossRef]

A. Vander Lugt, R. H. Mitchel, J. Opt. Soc. Amer. 57, 372 (1967).
[CrossRef]

J. Soc. Chem. Ind.

H. Chapman Jones, J. Soc. Chem. Ind. 12, 983 (1893).

Photograph. J.

H. Chapman Jones, Photograph. J. 33, 95 (1893).

H. Chapman Jones, Photograph. J. 30, 40 (1889).

Other

H. Kogelnik, Proceedings of the Symposium on Modern Optics (Polytechnic Press, Brooklyn, 1967), pp. 605–617.

C. E. K. Mees, T. H. James, The Theory of the Photographic Process (Macmillan Co., New York, 1966).

C. E. K. Mees, The Theory of the Photographic Process (Macmillan Co., New York, 1954).

E. J. Wall, Intensification and Reduction (American Photographic Publishing Co., Boston, 1927).

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox, in Optical and Electro-Optical Information Processing, J. T. Tippett et al., Eds. (MIT Press, Cambridge, 1965), pp. 1–30.

N. George, Department of Electrical Engineering, California Institute of Technology, Pasadena, Calif., private communication. (Although not specifically mentioned in Ref. 14, the bleach used for Fig. 3 was chromium intensifier. George tried the prepackaged Kodak chromium intensifier and the mixed type and found the Kodak material superior.)

J. M. Stone, Radiation and Optics (McGraw-Hill Book Company, Inc., New York, 1963).

Eastman Kodak Co., Processing Chemicals and Formulas, Sixth Edition, Rochester, New York, 1963.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

General hologram diffraction grating.

Fig. 2
Fig. 2

Density vs log exposure for 649–F film exposed and measured at λ = 6328 Å.

Fig. 3(a)
Fig. 3(a)

Efficiency vs intensity transmission for dense holograms before and after bleaching in HgCl2.

Fig. 3(b)
Fig. 3(b)

Transmission after bleaching in HgCl2 vs original transmission.

Fig. 4
Fig. 4

A graph of grating efficiency (eff/transmission) vs original transmission at 6328 Å.

Fig. 5
Fig. 5

Comparison of the before and after intensity transmission of mercuric chloride and chromium intensifier at 6328 Å.

Fig. 6(a)
Fig. 6(a)

Efficiency vs original intensity transmission for HgCl2 at 6328 Å and 9100 Å for high transmissions.

Fig. 6(b)
Fig. 6(b)

Efficiencies of first and second order images after bleaching vs original transmission.

Fig. 7
Fig. 7

Graph of T vs exposure for 649–F plates exposed at 6328 Å and illuminated at 6328 Å and 9100 Å.

Fig. 8
Fig. 8

The effect of mercuric chloride on a hologram diffraction grating. The appearance of different grating spacings is actually a difference in the camera settings between the two photographs.

Fig. 9
Fig. 9

Efficiency vs original transmission for holograms bleached in chromium intensifier and HgCl2 (see text).

Fig. 10
Fig. 10

Efficiency vs original transmission at 6328 Å for chromium intensifier.

Fig. 11
Fig. 11

Efficiencies of chromium intensified holograms at 6328 Å and 9100 Å vs original transmission.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

D = λ / ( sin θ 1 + sin θ 2 ) .
S ( d ) = - j sin ( π n 1 d / λ cos θ ) ,
S ( d ) = - j sin ( π n 1 d / λ cos θ ) .
π n 1 d / λ cos θ = π / 2 ,
n 1 d / cos θ = λ peak eff / 2.
λ 9100 Å / λ 6328 Å = 1.44 , cos θ 6328 Å cos θ 9100 Å = cos 15° cos 22° = 1.04.
S ( d ) 9100 Å = - j sin [ ( π n 1 d λ 6328 Å cos θ 6328 Å ) λ 6328 Å λ 9100 Å cos θ 6328 Å cos θ 9100 Å ] = - j sin [ ( π 2 λ peak off λ 6328 Å ) ( 1 1.44 ) ( 1.04 ) ] = - j sin 65° = - j ( 0.906 ) , I ( d ) [ S ( d ) ] 2 = 0.82.
S ( d ) = - j sin [ ( π / 2 ) ( 1.44 ) ( 1 / 1.04 ) ] = - j sin ( 125° ) = - j ( 0.819 ) , I ( d ) [ S ( d ) ] 2 = ( 0.819 ) 2 = 0.67.

Metrics