Abstract

A procedure for making quantitative measurements of the mean lives of electronic levels in beam foil-excited ions is described. Special emphasis is given to the theoretical equations that must be fitted to data and various beam particle monitoring techniques.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Bashkin, Appl. Opt. 7, 2341 (1968).
    [CrossRef] [PubMed]
  2. W. S. Bickel, Appl. Opt. 6, 1309 (1967).
    [CrossRef] [PubMed]
  3. J. B. Marion, Rev. Mod. Phys. 38, 660 (1966).
    [CrossRef]
  4. L. C. Northcliffe, Ann. Rev. Nucl. Sci. 13, 67 (1963).
    [CrossRef]

1968 (1)

1967 (1)

1966 (1)

J. B. Marion, Rev. Mod. Phys. 38, 660 (1966).
[CrossRef]

1963 (1)

L. C. Northcliffe, Ann. Rev. Nucl. Sci. 13, 67 (1963).
[CrossRef]

Bashkin, S.

Bickel, W. S.

Marion, J. B.

J. B. Marion, Rev. Mod. Phys. 38, 660 (1966).
[CrossRef]

Northcliffe, L. C.

L. C. Northcliffe, Ann. Rev. Nucl. Sci. 13, 67 (1963).
[CrossRef]

Ann. Rev. Nucl. Sci. (1)

L. C. Northcliffe, Ann. Rev. Nucl. Sci. 13, 67 (1963).
[CrossRef]

Appl. Opt. (2)

Rev. Mod. Phys. (1)

J. B. Marion, Rev. Mod. Phys. 38, 660 (1966).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of complications in mean life measurements when both cascade and direct processes populate the level(s) of interest.

Fig. 2
Fig. 2

Schematic representation of experimental arrangement for photographic measurements.

Fig. 3
Fig. 3

Densitometer tracing along a particular spectral line.

Fig. 4
Fig. 4

Experimental arrangement for photoelastic measurements.

Fig. 5
Fig. 5

Geometry of detection system.

Fig. 6
Fig. 6

Relative intensity of Ly α as a function of distance downstream from the exciter foil.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P i f = h ν i f I i f ( t ) = h ν i f A i f N i ( t ) ,
τ i - 1 = f < i A i f ,
d N i / d t = - N i f < i A i f + j > i N j ( t ) A j i
N i = N i ( 0 ) exp ( - f A i f ( t ) = N i ( 0 ) exp ( - t / τ i ) .
P 4 f ( t ) = P 4 f ( 0 ) exp ( - t / τ 4 ) ,
τ 4 = f = 1 1 A 4 f .
P 3 f ( t ) = P 3 f ( 0 ) { exp ( - t / τ 3 ) + ( τ 3 τ 4 τ 4 - τ 3 ) × [ P 43 ( 0 ) N 3 ( 0 ) h ν 43 ] [ exp ( - t / τ 4 ) - exp ( t / τ 3 ) } ,
P 21 ( t ) = P 21 ( 0 ) { exp ( - t / τ 2 ) + ( τ 2 τ 3 τ 3 - τ 2 ) × [ P 32 ( 0 ) N 2 ( 0 ) h ν 32 ] [ exp ( - t / τ 3 ) - exp ( - t / τ 2 ) ] + ( τ 2 τ 4 τ 4 - τ 2 ) [ P 42 ( 0 ) N 2 ( 0 ) h ν 42 ] [ exp ( - t / τ 4 ) - exp ( - t / τ 2 ) ] } .
N i ( x ) = [ 2 N i ( 0 ) S v τ sinh δ 2 v τ ] exp ( - x / τ v ) ,
J ( x ) = M exp ( - x / τ i v ) .

Metrics