Abstract

The experimental procedures required to operate windowless photomultiplier detectors as photon counters in the extreme uv (xuv) below wavelengths of about 1300 Å are reviewed. The requirements for obtaining a well-defined counting plateau for the counting system under conditions of operation frequently met in laboratory vacuum systems are emphasized. The determination of both the absolute quantum efficiency of the detector and the dynamic range over which the response of the detector varies linearly with the rate of photons is described. The experimental methods used to determine the photometric efficiency of a monochromator and its detection system are also discussed.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. Cairns, J. A. R. Samson, J. Opt. Soc. Amer. 56, 1568 (1966).
    [CrossRef]
  2. L. Heroux, H. E. Hinteregger, Rev. Sci. Instrum. 31, 280 (1960).
    [CrossRef]
  3. A. F. Timothy, J. G. Timothy, A. P. Willmore, Appl. Opt. 6, 1319 (1967).
    [CrossRef] [PubMed]
  4. L. A. Hall, K. R. Damon, H. E. Hinteregger, Space Research III (North-Holland Publishing Company, Amsterdam, 1963), p. 745.
  5. J. S. Allen, Rev. Sci. Instrum. 12, 484 (1941).
    [CrossRef]
  6. L. Heroux, R. G. Newburgh, W. J. McMahon, H. E. Hinteregger, Appl. Opt. 7, 37 (1968).
    [CrossRef] [PubMed]
  7. G. W. Goodrich, W. C. Wiley, Rev. Sci. Instrum. 32, 846 (1961).
    [CrossRef]
  8. L. Heroux, H. E. Hinteregger, Appl. Opt. 1, 701 (1962).
    [CrossRef]
  9. F. J. Lombard, F. Martin, Rev. Sci. Instrum. 32, 200 (1961).
    [CrossRef]
  10. J. R. Prescott, Nucl. Instrum. Methods 39, 173 (1966).
    [CrossRef]
  11. G. A. Morton, Appl. Opt. 7, 1 (1968).
    [CrossRef] [PubMed]
  12. S. P. Wang, EMR Rep. under Contract AF19(628)–4763 (6July1966).
  13. J. A. R. Samson, J. Opt. Soc. Amer. 54, 6 (1964).
    [CrossRef]
  14. J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (John Wiley & Sons, Inc., New York, 1967), p. 290.
  15. H. E. Hinteregger, in Space Astrophysics, W. Liller, Ed., (McGraw-Hill Book Company, Inc., New York, 1961), p. 34.
  16. H. E. Hinteregger, Space Sci. Rev. 4, 461 (1965).
    [CrossRef]
  17. W. G. Griffin, R. W. P. McWhirter, in Conference on Optical Instruments and Techniques, K. J. Habell, Ed. (Chapman and Hall, London, 1962), p. 14.
  18. E. Hinnov, F. Hofmann, J. Opt. Soc. Amer. 53, 1259 (1963).
    [CrossRef]
  19. H. A. Bethe, E. E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Springer-Verlag, Berlin, 1957), p. 266.
  20. W. L. Wiese, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities (U.S. Government Printing Office, Washington, D.C., 1966), Vol. 1.
  21. W. S. Bickel, A. S. Goodman, Phys. Rev. 148, 1 (1966).
    [CrossRef]
  22. L. Heroux, Phys. Rev. 161, 47 (1967).
    [CrossRef]

1968

1967

1966

W. S. Bickel, A. S. Goodman, Phys. Rev. 148, 1 (1966).
[CrossRef]

R. B. Cairns, J. A. R. Samson, J. Opt. Soc. Amer. 56, 1568 (1966).
[CrossRef]

J. R. Prescott, Nucl. Instrum. Methods 39, 173 (1966).
[CrossRef]

1965

H. E. Hinteregger, Space Sci. Rev. 4, 461 (1965).
[CrossRef]

1964

J. A. R. Samson, J. Opt. Soc. Amer. 54, 6 (1964).
[CrossRef]

1963

E. Hinnov, F. Hofmann, J. Opt. Soc. Amer. 53, 1259 (1963).
[CrossRef]

1962

1961

G. W. Goodrich, W. C. Wiley, Rev. Sci. Instrum. 32, 846 (1961).
[CrossRef]

F. J. Lombard, F. Martin, Rev. Sci. Instrum. 32, 200 (1961).
[CrossRef]

1960

L. Heroux, H. E. Hinteregger, Rev. Sci. Instrum. 31, 280 (1960).
[CrossRef]

1941

J. S. Allen, Rev. Sci. Instrum. 12, 484 (1941).
[CrossRef]

Allen, J. S.

J. S. Allen, Rev. Sci. Instrum. 12, 484 (1941).
[CrossRef]

Bethe, H. A.

H. A. Bethe, E. E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Springer-Verlag, Berlin, 1957), p. 266.

Bickel, W. S.

W. S. Bickel, A. S. Goodman, Phys. Rev. 148, 1 (1966).
[CrossRef]

Cairns, R. B.

R. B. Cairns, J. A. R. Samson, J. Opt. Soc. Amer. 56, 1568 (1966).
[CrossRef]

Damon, K. R.

L. A. Hall, K. R. Damon, H. E. Hinteregger, Space Research III (North-Holland Publishing Company, Amsterdam, 1963), p. 745.

Glennon, B. M.

W. L. Wiese, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities (U.S. Government Printing Office, Washington, D.C., 1966), Vol. 1.

Goodman, A. S.

W. S. Bickel, A. S. Goodman, Phys. Rev. 148, 1 (1966).
[CrossRef]

Goodrich, G. W.

G. W. Goodrich, W. C. Wiley, Rev. Sci. Instrum. 32, 846 (1961).
[CrossRef]

Griffin, W. G.

W. G. Griffin, R. W. P. McWhirter, in Conference on Optical Instruments and Techniques, K. J. Habell, Ed. (Chapman and Hall, London, 1962), p. 14.

Hall, L. A.

L. A. Hall, K. R. Damon, H. E. Hinteregger, Space Research III (North-Holland Publishing Company, Amsterdam, 1963), p. 745.

Heroux, L.

Hinnov, E.

E. Hinnov, F. Hofmann, J. Opt. Soc. Amer. 53, 1259 (1963).
[CrossRef]

Hinteregger, H. E.

L. Heroux, R. G. Newburgh, W. J. McMahon, H. E. Hinteregger, Appl. Opt. 7, 37 (1968).
[CrossRef] [PubMed]

H. E. Hinteregger, Space Sci. Rev. 4, 461 (1965).
[CrossRef]

L. Heroux, H. E. Hinteregger, Appl. Opt. 1, 701 (1962).
[CrossRef]

L. Heroux, H. E. Hinteregger, Rev. Sci. Instrum. 31, 280 (1960).
[CrossRef]

L. A. Hall, K. R. Damon, H. E. Hinteregger, Space Research III (North-Holland Publishing Company, Amsterdam, 1963), p. 745.

H. E. Hinteregger, in Space Astrophysics, W. Liller, Ed., (McGraw-Hill Book Company, Inc., New York, 1961), p. 34.

Hofmann, F.

E. Hinnov, F. Hofmann, J. Opt. Soc. Amer. 53, 1259 (1963).
[CrossRef]

Lombard, F. J.

F. J. Lombard, F. Martin, Rev. Sci. Instrum. 32, 200 (1961).
[CrossRef]

Martin, F.

F. J. Lombard, F. Martin, Rev. Sci. Instrum. 32, 200 (1961).
[CrossRef]

McMahon, W. J.

McWhirter, R. W. P.

W. G. Griffin, R. W. P. McWhirter, in Conference on Optical Instruments and Techniques, K. J. Habell, Ed. (Chapman and Hall, London, 1962), p. 14.

Morton, G. A.

Newburgh, R. G.

Prescott, J. R.

J. R. Prescott, Nucl. Instrum. Methods 39, 173 (1966).
[CrossRef]

Salpeter, E. E.

H. A. Bethe, E. E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Springer-Verlag, Berlin, 1957), p. 266.

Samson, J. A. R.

R. B. Cairns, J. A. R. Samson, J. Opt. Soc. Amer. 56, 1568 (1966).
[CrossRef]

J. A. R. Samson, J. Opt. Soc. Amer. 54, 6 (1964).
[CrossRef]

J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (John Wiley & Sons, Inc., New York, 1967), p. 290.

Smith, M. W.

W. L. Wiese, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities (U.S. Government Printing Office, Washington, D.C., 1966), Vol. 1.

Timothy, A. F.

Timothy, J. G.

Wang, S. P.

S. P. Wang, EMR Rep. under Contract AF19(628)–4763 (6July1966).

Wiese, W. L.

W. L. Wiese, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities (U.S. Government Printing Office, Washington, D.C., 1966), Vol. 1.

Wiley, W. C.

G. W. Goodrich, W. C. Wiley, Rev. Sci. Instrum. 32, 846 (1961).
[CrossRef]

Willmore, A. P.

Appl. Opt.

J. Opt. Soc. Amer.

E. Hinnov, F. Hofmann, J. Opt. Soc. Amer. 53, 1259 (1963).
[CrossRef]

R. B. Cairns, J. A. R. Samson, J. Opt. Soc. Amer. 56, 1568 (1966).
[CrossRef]

J. A. R. Samson, J. Opt. Soc. Amer. 54, 6 (1964).
[CrossRef]

Nucl. Instrum. Methods

J. R. Prescott, Nucl. Instrum. Methods 39, 173 (1966).
[CrossRef]

Phys. Rev.

W. S. Bickel, A. S. Goodman, Phys. Rev. 148, 1 (1966).
[CrossRef]

L. Heroux, Phys. Rev. 161, 47 (1967).
[CrossRef]

Rev. Sci. Instrum.

L. Heroux, H. E. Hinteregger, Rev. Sci. Instrum. 31, 280 (1960).
[CrossRef]

J. S. Allen, Rev. Sci. Instrum. 12, 484 (1941).
[CrossRef]

G. W. Goodrich, W. C. Wiley, Rev. Sci. Instrum. 32, 846 (1961).
[CrossRef]

F. J. Lombard, F. Martin, Rev. Sci. Instrum. 32, 200 (1961).
[CrossRef]

Space Sci. Rev.

H. E. Hinteregger, Space Sci. Rev. 4, 461 (1965).
[CrossRef]

Other

W. G. Griffin, R. W. P. McWhirter, in Conference on Optical Instruments and Techniques, K. J. Habell, Ed. (Chapman and Hall, London, 1962), p. 14.

H. A. Bethe, E. E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Springer-Verlag, Berlin, 1957), p. 266.

W. L. Wiese, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities (U.S. Government Printing Office, Washington, D.C., 1966), Vol. 1.

L. A. Hall, K. R. Damon, H. E. Hinteregger, Space Research III (North-Holland Publishing Company, Amsterdam, 1963), p. 745.

S. P. Wang, EMR Rep. under Contract AF19(628)–4763 (6July1966).

J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (John Wiley & Sons, Inc., New York, 1967), p. 290.

H. E. Hinteregger, in Space Astrophysics, W. Liller, Ed., (McGraw-Hill Book Company, Inc., New York, 1961), p. 34.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematics for two windowless photomultiplier detectors. Upper, Bendix M306 magnetic photomultiplier. Lower, photocathode coupled to a conventional discrete dynode electron multiplier. ϕ0 represents the incident photon beam.

Fig. 2
Fig. 2

Differential anode pulse height distribution for a Bendix magnetic photomultiplier. Data by Heroux and Hinteregger.2

Fig. 3
Fig. 3

Anode pulse height distribution for a Be–Cu EMR electron multiplier. Data by Wang.12

Fig. 4
Fig. 4

The dependence of counting rate on high voltage for a Bendix magnetic photomultiplier at several pressures. Data by Heroux and Hinteregger.2

Fig. 5
Fig. 5

The dependence of counting rate on high voltage for an EMR Be–Cu electron multiplier. Data by Wang.12

Fig. 6
Fig. 6

Variation of the photoelectron counting efficiency η with position of illumination on the photocathode. The area of the cathode illuminated is indicated by the solid rectangle above the curve.

Fig. 7
Fig. 7

The determination of the linear range of a counting system by monitoring the relative flux level with a reference photocathode. Nonlinearity at high counting rates appears as a departure of the measured counting rate ● from the broken straight line.

Fig. 8
Fig. 8

The determination of the linear range of a counting system by measuring the transmittance of a nickel grid. Nonlinearity at high counting rates N0 is evident as the measured transmittance N/N0 departs from the value 0.47.

Metrics