Abstract

An interferometer is described that is capable of measuring the deviation of a target device from a plane with an accuracy of 0.1 μ, when the interferometer–target separation is as much as 10 m. This interferometer resembles one described in 1965 by Baldwin and Whitten in that they both use a Kösters prism and a Porro prism. The present use of a laser for the light source yields nonlocalized fringes at the output that are easily monitored by an electronic fringe detector.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kissam, Optical Tooling (McGraw-Hill Book Co., Inc., New York, 1962), Ch. 6, 7, and 8.
  2. A. C. S. van Heel, Progress in Optics (John Wiley & Sons, Inc., New York, 1961), Vol. 1, pp. 289–329.
    [CrossRef]
  3. J. Dyson, in Optics in Metrology, P. Mollet, Ed. (Pergamon Press, Ltd., London, 1960), pp. 169–171.
  4. J. H. MacLeod, J. Opt. Soc. Amer. 44, 595 (1954).
  5. J. B. Saunders, J. Res. Nat. Bur. Stand. (U.S.) 58, 21 (1957).
    [CrossRef]
  6. R. R. Baldwin, L. G. Whitten, Alignment Interferometer (ASME), paper 64–WA/PROD–5 (1964).
  7. R. R. Baldwin, L. G. Whitten, “Principles and Operation of the Alignment Interferometer” (Union Carbide Corp., Oak Ridge, Tennessee), Rep. Y–1489.

1964

R. R. Baldwin, L. G. Whitten, Alignment Interferometer (ASME), paper 64–WA/PROD–5 (1964).

1957

J. B. Saunders, J. Res. Nat. Bur. Stand. (U.S.) 58, 21 (1957).
[CrossRef]

1954

J. H. MacLeod, J. Opt. Soc. Amer. 44, 595 (1954).

Baldwin, R. R.

R. R. Baldwin, L. G. Whitten, Alignment Interferometer (ASME), paper 64–WA/PROD–5 (1964).

R. R. Baldwin, L. G. Whitten, “Principles and Operation of the Alignment Interferometer” (Union Carbide Corp., Oak Ridge, Tennessee), Rep. Y–1489.

Dyson, J.

J. Dyson, in Optics in Metrology, P. Mollet, Ed. (Pergamon Press, Ltd., London, 1960), pp. 169–171.

Kissam, P.

P. Kissam, Optical Tooling (McGraw-Hill Book Co., Inc., New York, 1962), Ch. 6, 7, and 8.

MacLeod, J. H.

J. H. MacLeod, J. Opt. Soc. Amer. 44, 595 (1954).

Saunders, J. B.

J. B. Saunders, J. Res. Nat. Bur. Stand. (U.S.) 58, 21 (1957).
[CrossRef]

van Heel, A. C. S.

A. C. S. van Heel, Progress in Optics (John Wiley & Sons, Inc., New York, 1961), Vol. 1, pp. 289–329.
[CrossRef]

Whitten, L. G.

R. R. Baldwin, L. G. Whitten, Alignment Interferometer (ASME), paper 64–WA/PROD–5 (1964).

R. R. Baldwin, L. G. Whitten, “Principles and Operation of the Alignment Interferometer” (Union Carbide Corp., Oak Ridge, Tennessee), Rep. Y–1489.

Alignment Interferometer (ASME)

R. R. Baldwin, L. G. Whitten, Alignment Interferometer (ASME), paper 64–WA/PROD–5 (1964).

J. Opt. Soc. Amer.

J. H. MacLeod, J. Opt. Soc. Amer. 44, 595 (1954).

J. Res. Nat. Bur. Stand. (U.S.)

J. B. Saunders, J. Res. Nat. Bur. Stand. (U.S.) 58, 21 (1957).
[CrossRef]

Other

P. Kissam, Optical Tooling (McGraw-Hill Book Co., Inc., New York, 1962), Ch. 6, 7, and 8.

A. C. S. van Heel, Progress in Optics (John Wiley & Sons, Inc., New York, 1961), Vol. 1, pp. 289–329.
[CrossRef]

J. Dyson, in Optics in Metrology, P. Mollet, Ed. (Pergamon Press, Ltd., London, 1960), pp. 169–171.

R. R. Baldwin, L. G. Whitten, “Principles and Operation of the Alignment Interferometer” (Union Carbide Corp., Oak Ridge, Tennessee), Rep. Y–1489.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Michelson interferometer; (b) modified Michelson interferometer; (c) Baldwin and Whitten interferometer; (d) Itek Corporation alignment interferometer.

Fig. 2
Fig. 2

General arrangement of parts in alignment interferometer.

Fig. 3
Fig. 3

Geometric arrangement for determining the angle ϕ.

Fig. 4
Fig. 4

Operational parameters of alignment interferometer.

Fig. 5
Fig. 5

Geometric arrangement for determining maximum working distance.

Fig. 6
Fig. 6

Geometric arrangement for determining working range.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ϕ = - β + 2 γ + 4
O P D = 4 δ α .
O P D = N λ .
4 δ α = N λ ,
δ = N λ / 4 α ,
d δ / d N = λ / 4 α .
tan α max = F / 2 w
w = ( F / 2 ) cot α max .

Metrics