Abstract

To study the distortion of a gaussian light beam in a long gas lens beam waveguide, a light pulse was shuttled back and forth more than 200 times in a 25-m optical cavity containing a gas lens. From the decay of the pulse train, a conservative upper limit of the optical loss of the gas lens was found to be 0.1%. By scanning the intensity of the beam on various round trips, the beam distortion could be measured. When the center of the beam remained near the optic axis of the lens, no appreciable beam distortion was measured after more than 400 trips through the lens. If the beam center did not hit the lens at the same transverse point on each pass but undulated, some distortion was observed. The largest distortions occurred when the beam undulated in the lower part of the lens where the lens has the greatest aberration caused by gravity. The larger the undulation amplitude, the faster the beam broke up. The largest distortion was observed when the lens with the greatest aberration due to gravity was used.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Berreman, Bell System Tech. J. 43, 1469 (1964).
  2. P. K. Tien, J. P. Gordon, J. R. Whinnery, Proc. IEEE, 53, 129 (1965).
    [CrossRef]
  3. D. Marcuse, S. E. Miller, Bell System Tech. J. 43, 1759 (1964).
  4. D. Marcuse, Bell System Tech. J. 43, 741 (1964).
  5. H. G. Unger, Arch. Elektr. Übertr. 19, 189 (1965).
  6. D. Marcuse, IEEE Trans. Microwave Theory Technique MTT-13, 734 (1965).
    [CrossRef]
  7. A. C. Beck, Bell System Tech. J. 43, 1818 (1964).
  8. W. H. Steier, IEEE Trans. Microwave Theory Technique MTT-13, 740 (1965).
    [CrossRef]
  9. E. A. J. Marcatili, Bell System Tech. J. 46, 1733 (1967).
  10. D. Marcuse, Bell System Tech. J. 45, 1345 (1966).
  11. P. Kaiser, Bell System Tech. J. 47, 179 (1968).
  12. S. E. Miller, L. C. Tillotson, Proc. IEEE 54, 1300 (1966).
    [CrossRef]
  13. J. Hirano, Y. Fukatsu, Proc. IEEE 52, 1284 (1964).
    [CrossRef]
  14. D. W. Berreman, Bell System Tech. J. 44, 2117 (1965).
  15. D. Marcuse, Bell System Tech. J. 44, 2065 (1965).
  16. W. H. Steier, Bell System Tech. J. 45, 451 (1966).
  17. D. Gloge, Bell System Tech. J. 46, 2467 (1967).
  18. J. R. Christian, G. Goubau, J. W. Mink, IEEE J. Quant. Electron. QE-3, 498 (1967).
    [CrossRef]
  19. E. A. J. Marcatili, Bell System Tech. J. 45, 105 (1966).
  20. O. E. DeLange, Bell System Tech. J. 44, 283 (1965).
  21. S. E. Miller, A. C. Beck, Proc. IRE 41, 348 (1953).
    [CrossRef]
  22. W. H. Steier, Proc. IEEE 54, 1604 (1966).
    [CrossRef]
  23. H. Kogelnik, T. Li, Proc. IEEE 54, 1312 (1966).
    [CrossRef]
  24. D. Slepian, J. Math. Phys. 44, 99 (1965).
  25. D. Gloge, W. H. Steier, Bell System Tech. J. 47, 767 (1968).
  26. W. H. Steier, Appl. Opt. 5, 1229 (1966).
    [CrossRef] [PubMed]
  27. W. K. Kahn, Appl. Opt. 4, 758 (1965).
    [CrossRef]
  28. A. C. Beck, IEEE Trans. Microwave Theory Technique MTT-15, 433 (1967).
    [CrossRef]
  29. D. Gloge, Bell System Tech. J. 46, 357 (1967).
  30. S. E. Miller, Bell Telephone Laboratories, Inc., private communication, 8February1968.

1968 (2)

P. Kaiser, Bell System Tech. J. 47, 179 (1968).

D. Gloge, W. H. Steier, Bell System Tech. J. 47, 767 (1968).

1967 (5)

A. C. Beck, IEEE Trans. Microwave Theory Technique MTT-15, 433 (1967).
[CrossRef]

D. Gloge, Bell System Tech. J. 46, 357 (1967).

D. Gloge, Bell System Tech. J. 46, 2467 (1967).

J. R. Christian, G. Goubau, J. W. Mink, IEEE J. Quant. Electron. QE-3, 498 (1967).
[CrossRef]

E. A. J. Marcatili, Bell System Tech. J. 46, 1733 (1967).

1966 (7)

D. Marcuse, Bell System Tech. J. 45, 1345 (1966).

E. A. J. Marcatili, Bell System Tech. J. 45, 105 (1966).

S. E. Miller, L. C. Tillotson, Proc. IEEE 54, 1300 (1966).
[CrossRef]

W. H. Steier, Appl. Opt. 5, 1229 (1966).
[CrossRef] [PubMed]

W. H. Steier, Proc. IEEE 54, 1604 (1966).
[CrossRef]

H. Kogelnik, T. Li, Proc. IEEE 54, 1312 (1966).
[CrossRef]

W. H. Steier, Bell System Tech. J. 45, 451 (1966).

1965 (9)

D. Slepian, J. Math. Phys. 44, 99 (1965).

W. K. Kahn, Appl. Opt. 4, 758 (1965).
[CrossRef]

D. W. Berreman, Bell System Tech. J. 44, 2117 (1965).

D. Marcuse, Bell System Tech. J. 44, 2065 (1965).

O. E. DeLange, Bell System Tech. J. 44, 283 (1965).

W. H. Steier, IEEE Trans. Microwave Theory Technique MTT-13, 740 (1965).
[CrossRef]

P. K. Tien, J. P. Gordon, J. R. Whinnery, Proc. IEEE, 53, 129 (1965).
[CrossRef]

H. G. Unger, Arch. Elektr. Übertr. 19, 189 (1965).

D. Marcuse, IEEE Trans. Microwave Theory Technique MTT-13, 734 (1965).
[CrossRef]

1964 (5)

A. C. Beck, Bell System Tech. J. 43, 1818 (1964).

D. Marcuse, S. E. Miller, Bell System Tech. J. 43, 1759 (1964).

D. Marcuse, Bell System Tech. J. 43, 741 (1964).

D. W. Berreman, Bell System Tech. J. 43, 1469 (1964).

J. Hirano, Y. Fukatsu, Proc. IEEE 52, 1284 (1964).
[CrossRef]

1953 (1)

S. E. Miller, A. C. Beck, Proc. IRE 41, 348 (1953).
[CrossRef]

Beck, A. C.

A. C. Beck, IEEE Trans. Microwave Theory Technique MTT-15, 433 (1967).
[CrossRef]

A. C. Beck, Bell System Tech. J. 43, 1818 (1964).

S. E. Miller, A. C. Beck, Proc. IRE 41, 348 (1953).
[CrossRef]

Berreman, D. W.

D. W. Berreman, Bell System Tech. J. 44, 2117 (1965).

D. W. Berreman, Bell System Tech. J. 43, 1469 (1964).

Christian, J. R.

J. R. Christian, G. Goubau, J. W. Mink, IEEE J. Quant. Electron. QE-3, 498 (1967).
[CrossRef]

DeLange, O. E.

O. E. DeLange, Bell System Tech. J. 44, 283 (1965).

Fukatsu, Y.

J. Hirano, Y. Fukatsu, Proc. IEEE 52, 1284 (1964).
[CrossRef]

Gloge, D.

D. Gloge, W. H. Steier, Bell System Tech. J. 47, 767 (1968).

D. Gloge, Bell System Tech. J. 46, 2467 (1967).

D. Gloge, Bell System Tech. J. 46, 357 (1967).

Gordon, J. P.

P. K. Tien, J. P. Gordon, J. R. Whinnery, Proc. IEEE, 53, 129 (1965).
[CrossRef]

Goubau, G.

J. R. Christian, G. Goubau, J. W. Mink, IEEE J. Quant. Electron. QE-3, 498 (1967).
[CrossRef]

Hirano, J.

J. Hirano, Y. Fukatsu, Proc. IEEE 52, 1284 (1964).
[CrossRef]

Kahn, W. K.

Kaiser, P.

P. Kaiser, Bell System Tech. J. 47, 179 (1968).

Kogelnik, H.

H. Kogelnik, T. Li, Proc. IEEE 54, 1312 (1966).
[CrossRef]

Li, T.

H. Kogelnik, T. Li, Proc. IEEE 54, 1312 (1966).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili, Bell System Tech. J. 46, 1733 (1967).

E. A. J. Marcatili, Bell System Tech. J. 45, 105 (1966).

Marcuse, D.

D. Marcuse, Bell System Tech. J. 45, 1345 (1966).

D. Marcuse, IEEE Trans. Microwave Theory Technique MTT-13, 734 (1965).
[CrossRef]

D. Marcuse, Bell System Tech. J. 44, 2065 (1965).

D. Marcuse, Bell System Tech. J. 43, 741 (1964).

D. Marcuse, S. E. Miller, Bell System Tech. J. 43, 1759 (1964).

Miller, S. E.

S. E. Miller, L. C. Tillotson, Proc. IEEE 54, 1300 (1966).
[CrossRef]

D. Marcuse, S. E. Miller, Bell System Tech. J. 43, 1759 (1964).

S. E. Miller, A. C. Beck, Proc. IRE 41, 348 (1953).
[CrossRef]

S. E. Miller, Bell Telephone Laboratories, Inc., private communication, 8February1968.

Mink, J. W.

J. R. Christian, G. Goubau, J. W. Mink, IEEE J. Quant. Electron. QE-3, 498 (1967).
[CrossRef]

Slepian, D.

D. Slepian, J. Math. Phys. 44, 99 (1965).

Steier, W. H.

D. Gloge, W. H. Steier, Bell System Tech. J. 47, 767 (1968).

W. H. Steier, Bell System Tech. J. 45, 451 (1966).

W. H. Steier, Proc. IEEE 54, 1604 (1966).
[CrossRef]

W. H. Steier, Appl. Opt. 5, 1229 (1966).
[CrossRef] [PubMed]

W. H. Steier, IEEE Trans. Microwave Theory Technique MTT-13, 740 (1965).
[CrossRef]

Tien, P. K.

P. K. Tien, J. P. Gordon, J. R. Whinnery, Proc. IEEE, 53, 129 (1965).
[CrossRef]

Tillotson, L. C.

S. E. Miller, L. C. Tillotson, Proc. IEEE 54, 1300 (1966).
[CrossRef]

Unger, H. G.

H. G. Unger, Arch. Elektr. Übertr. 19, 189 (1965).

Whinnery, J. R.

P. K. Tien, J. P. Gordon, J. R. Whinnery, Proc. IEEE, 53, 129 (1965).
[CrossRef]

Appl. Opt. (2)

Arch. Elektr. Übertr. (1)

H. G. Unger, Arch. Elektr. Übertr. 19, 189 (1965).

Bell System Tech. J. (15)

A. C. Beck, Bell System Tech. J. 43, 1818 (1964).

D. W. Berreman, Bell System Tech. J. 43, 1469 (1964).

D. Marcuse, S. E. Miller, Bell System Tech. J. 43, 1759 (1964).

D. Marcuse, Bell System Tech. J. 43, 741 (1964).

E. A. J. Marcatili, Bell System Tech. J. 46, 1733 (1967).

D. Marcuse, Bell System Tech. J. 45, 1345 (1966).

P. Kaiser, Bell System Tech. J. 47, 179 (1968).

D. W. Berreman, Bell System Tech. J. 44, 2117 (1965).

D. Marcuse, Bell System Tech. J. 44, 2065 (1965).

W. H. Steier, Bell System Tech. J. 45, 451 (1966).

D. Gloge, Bell System Tech. J. 46, 2467 (1967).

E. A. J. Marcatili, Bell System Tech. J. 45, 105 (1966).

O. E. DeLange, Bell System Tech. J. 44, 283 (1965).

D. Gloge, W. H. Steier, Bell System Tech. J. 47, 767 (1968).

D. Gloge, Bell System Tech. J. 46, 357 (1967).

IEEE J. Quant. Electron. (1)

J. R. Christian, G. Goubau, J. W. Mink, IEEE J. Quant. Electron. QE-3, 498 (1967).
[CrossRef]

IEEE Trans. Microwave Theory Technique (3)

W. H. Steier, IEEE Trans. Microwave Theory Technique MTT-13, 740 (1965).
[CrossRef]

D. Marcuse, IEEE Trans. Microwave Theory Technique MTT-13, 734 (1965).
[CrossRef]

A. C. Beck, IEEE Trans. Microwave Theory Technique MTT-15, 433 (1967).
[CrossRef]

J. Math. Phys. (1)

D. Slepian, J. Math. Phys. 44, 99 (1965).

Proc. IEEE (5)

W. H. Steier, Proc. IEEE 54, 1604 (1966).
[CrossRef]

H. Kogelnik, T. Li, Proc. IEEE 54, 1312 (1966).
[CrossRef]

P. K. Tien, J. P. Gordon, J. R. Whinnery, Proc. IEEE, 53, 129 (1965).
[CrossRef]

S. E. Miller, L. C. Tillotson, Proc. IEEE 54, 1300 (1966).
[CrossRef]

J. Hirano, Y. Fukatsu, Proc. IEEE 52, 1284 (1964).
[CrossRef]

Proc. IRE (1)

S. E. Miller, A. C. Beck, Proc. IRE 41, 348 (1953).
[CrossRef]

Other (1)

S. E. Miller, Bell Telephone Laboratories, Inc., private communication, 8February1968.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the experiment.

Fig. 2
Fig. 2

The shuttle pulse cavity.

Fig. 3
Fig. 3

Horizontal profiles. Gas lens, ΔT = 106°C; F = 1.25 liters/min N2. Beam center stayed within 0.1 mm of the lens center.

Fig. 4
Fig. 4

Horizontal profiles. Gas lens, ΔT = 106°C; F = 1.25 liters/min N2. Beam center wandered 0.8 mm peak to peak in the side of the lens.

Fig. 5
Fig. 5

Vertical profiles. Gas lens, ΔT = 106°C; F = 1.25 liters/min N2. Beam center wandered (a) 0.8 mm and (b) 0.6 mm peak to peak in the bottom of the lens.

Fig. 6
Fig. 6

Vertical profiles. Quartz equiconvex lens, f = 60 cm. Beam center wandered 0.8 mm peak to peak in the top of the lens.

Fig. 7
Fig. 7

Vertical profiles. Gas lens, ΔT = 45°C; F = 5.0 liters/min N2. Beam center wandered 0.8 mm peak to peak in the bottom of the lens.

Fig. 8
Fig. 8

Vertical profiles. Gas lens, ΔT = 80°C; F = 0.7 liter/min CO2. Beam wandered 0.4 mm peak to peak in the side of the lens.

Fig. 9
Fig. 9

Vertical profiles. Gas lens, ΔT = 80°C, F = 0.7 liter/min CO2. Beam wandered 0.5 mm peak to peak in the bottom of the lens.

Metrics