Abstract

Two simple methods are presented by which the coherence between a laser light source and an illuminated object can be destroyed in optical systems where this coherence is undesirable. Both methods employ rotating phase changing disks; the first introduces a random time varying phase relationship across the area illuminated in the object plane, whereas the second produces a rapid, regular phase variation across this area. Results are claimed to be comparable to those obtained using normal incoherent light.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kirkpatrick, H. M. A. El-Sum, J. Opt. Soc. Amer. 46, 825 (1956).
    [CrossRef]
  2. E. N. Leith, J. Upatnieks, J. Opt. Soc. Amer. 54, 1295 (1964).
    [CrossRef]
  3. J. Upatnieks, Appl. Opt. 6, 1905 (1967).
    [CrossRef] [PubMed]
  4. P. S. Considine, J. Opt. Soc. Amer. 56, 1001 (1966).
    [CrossRef]
  5. C. E. Thomas, Appl. Opt. 7, 517 (1968).
    [CrossRef] [PubMed]
  6. J. D. Ridgen, E. I. Gordon, Proc. IRE 50, 2367 (1962).

1968 (1)

1967 (1)

1966 (1)

P. S. Considine, J. Opt. Soc. Amer. 56, 1001 (1966).
[CrossRef]

1964 (1)

E. N. Leith, J. Upatnieks, J. Opt. Soc. Amer. 54, 1295 (1964).
[CrossRef]

1962 (1)

J. D. Ridgen, E. I. Gordon, Proc. IRE 50, 2367 (1962).

1956 (1)

P. Kirkpatrick, H. M. A. El-Sum, J. Opt. Soc. Amer. 46, 825 (1956).
[CrossRef]

Considine, P. S.

P. S. Considine, J. Opt. Soc. Amer. 56, 1001 (1966).
[CrossRef]

El-Sum, H. M. A.

P. Kirkpatrick, H. M. A. El-Sum, J. Opt. Soc. Amer. 46, 825 (1956).
[CrossRef]

Gordon, E. I.

J. D. Ridgen, E. I. Gordon, Proc. IRE 50, 2367 (1962).

Kirkpatrick, P.

P. Kirkpatrick, H. M. A. El-Sum, J. Opt. Soc. Amer. 46, 825 (1956).
[CrossRef]

Leith, E. N.

E. N. Leith, J. Upatnieks, J. Opt. Soc. Amer. 54, 1295 (1964).
[CrossRef]

Ridgen, J. D.

J. D. Ridgen, E. I. Gordon, Proc. IRE 50, 2367 (1962).

Thomas, C. E.

Upatnieks, J.

J. Upatnieks, Appl. Opt. 6, 1905 (1967).
[CrossRef] [PubMed]

E. N. Leith, J. Upatnieks, J. Opt. Soc. Amer. 54, 1295 (1964).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Amer. (3)

P. Kirkpatrick, H. M. A. El-Sum, J. Opt. Soc. Amer. 46, 825 (1956).
[CrossRef]

E. N. Leith, J. Upatnieks, J. Opt. Soc. Amer. 54, 1295 (1964).
[CrossRef]

P. S. Considine, J. Opt. Soc. Amer. 56, 1001 (1966).
[CrossRef]

Proc. IRE (1)

J. D. Ridgen, E. I. Gordon, Proc. IRE 50, 2367 (1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram for spinning wedge method: F = focal plane of lens, O = object plane, R = radius of described circle in focal plane, X, Y = axis of wedge and lens, L = lens of focal length f, P = plane of wavefront passing through fixed point Q, W = rotating wedge, θ = wedge angle, and γ = refracted beam angle.

Fig. 2
Fig. 2

Geometry for ray paths between focal and object planes.

Fig. 3
Fig. 3

A portion of a color transparency illuminated with a laser source; magnification ×7. Results obtained using plane coherent illumination.

Fig. 4
Fig. 4

A portion of a color transparency illuminated with a laser source; magnification ×7. Results obtained using a stationary diffusing screen.

Fig. 5
Fig. 5

A portion of a color transparency illuminated with a laser source; magnification ×7. Results obtained using a rotating diffusing screen.

Fig. 6
Fig. 6

A portion of a color transparency illuminated with a laser source; magnification ×7. Results obtained using a spinning wedge.

Fig. 7
Fig. 7

A cross section of a root of the botanical specimen Ranunculus acris using a laser source; magnification ×75. Results obtained using plane coherent illumination.

Fig. 8
Fig. 8

A cross section of a root of the botanical specimen Ranunculus acris using a laser source; magnification ×75. Results obtained using a stationary diffusing screen.

Fig. 9
Fig. 9

A cross section of a root of the botanical specimen Ranunculus acris using a laser source; magnification ×75. Results obtained using a rotating diffusing screen.

Fig. 10
Fig. 10

A cross section of a root of the botanical specimen Ranunculus acris using a laser source; magnification ×75. Results obtained using a spinning wedge.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

γ = sin - 1 ( u sin θ ) - θ θ ( u - 1 )
s = [ l 2 + ( x - u ) 2 + ( y - v ) 2 ] 1 2 ; if l [ ( x - u ) 2 + ( y - v ) 2 ] 1 2 , s l + [ x 2 + y 2 + u 2 + v 2 - 2 ( x u + y v ) ] / 2 l .
p ( x , y ) = ( 2 π / λ ) [ x 2 + y 2 - 2 ( x u + y v ) 2 l ] .
u = R cos ω t , v = R sin ω t .
p ( x , y ) = ( π / λ l ) { x 2 + y 2 - 2 R ( x 2 + y 2 ) 1 2 sin [ ω t + tan - 1 ( x / y ) ] } .

Metrics