Abstract

The advent of multiwavelength lasers has stimulated considerable interest in wavelength selection, i.e., methods of selecting for various applications one or more of the available wavelengths from a given laser. This paper describes a technique for parallel wavelength separation or recombination of laser beams external to laser cavities. The device used is based on the optical activity of quartz crystals and on the polarization dependent reflection of birefringent calcite crystals.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Bloom, Appl. Phys. Lett. 2, 101 (1963).
    [CrossRef]
  2. V. J. Fowler, S. M. Stone, Laser Focus 3, 21 (1967).
  3. H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox in Optical and Electro-Optical Information Processing, J. T. Tippett, D. A. Berkowitz, L. C. Clapp, C. J. Koester, A. Vanderburgh, Eds. (MIT Press, Cambridge, Mass., 1965), Chap. 1.
  4. K. S. Pennington, L. H. Lin, Appl. Phys. Lett. 7, 56 (1965).
    [CrossRef]
  5. M. A. Habegger, T. J. Harris, Electronics 39, 84 (1966).
  6. R. H. Worrall, U.S. Patent No. 2,002,515, 28May1935.
  7. M. A. Habegger, T. J. Harris, J. Lipp, Appl. Opt. 5, 1403 (1966).
    [CrossRef] [PubMed]
  8. T. M. Lowry, Optical Rotatory Power (Dover Publications, Inc., New York, 1964).
  9. K. E. Riechhoff, Appl. Phys. Lett. 9, 87 (1966).
    [CrossRef]

1967 (1)

V. J. Fowler, S. M. Stone, Laser Focus 3, 21 (1967).

1966 (3)

M. A. Habegger, T. J. Harris, Electronics 39, 84 (1966).

M. A. Habegger, T. J. Harris, J. Lipp, Appl. Opt. 5, 1403 (1966).
[CrossRef] [PubMed]

K. E. Riechhoff, Appl. Phys. Lett. 9, 87 (1966).
[CrossRef]

1965 (1)

K. S. Pennington, L. H. Lin, Appl. Phys. Lett. 7, 56 (1965).
[CrossRef]

1963 (1)

A. L. Bloom, Appl. Phys. Lett. 2, 101 (1963).
[CrossRef]

Bloom, A. L.

A. L. Bloom, Appl. Phys. Lett. 2, 101 (1963).
[CrossRef]

Fleisher, H.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox in Optical and Electro-Optical Information Processing, J. T. Tippett, D. A. Berkowitz, L. C. Clapp, C. J. Koester, A. Vanderburgh, Eds. (MIT Press, Cambridge, Mass., 1965), Chap. 1.

Fowler, V. J.

V. J. Fowler, S. M. Stone, Laser Focus 3, 21 (1967).

Habegger, M. A.

M. A. Habegger, T. J. Harris, J. Lipp, Appl. Opt. 5, 1403 (1966).
[CrossRef] [PubMed]

M. A. Habegger, T. J. Harris, Electronics 39, 84 (1966).

Harris, T. J.

M. A. Habegger, T. J. Harris, Electronics 39, 84 (1966).

M. A. Habegger, T. J. Harris, J. Lipp, Appl. Opt. 5, 1403 (1966).
[CrossRef] [PubMed]

Lin, L. H.

K. S. Pennington, L. H. Lin, Appl. Phys. Lett. 7, 56 (1965).
[CrossRef]

Lipp, J.

Lowry, T. M.

T. M. Lowry, Optical Rotatory Power (Dover Publications, Inc., New York, 1964).

Pengelly, P.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox in Optical and Electro-Optical Information Processing, J. T. Tippett, D. A. Berkowitz, L. C. Clapp, C. J. Koester, A. Vanderburgh, Eds. (MIT Press, Cambridge, Mass., 1965), Chap. 1.

Pennington, K. S.

K. S. Pennington, L. H. Lin, Appl. Phys. Lett. 7, 56 (1965).
[CrossRef]

Reynolds, J.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox in Optical and Electro-Optical Information Processing, J. T. Tippett, D. A. Berkowitz, L. C. Clapp, C. J. Koester, A. Vanderburgh, Eds. (MIT Press, Cambridge, Mass., 1965), Chap. 1.

Riechhoff, K. E.

K. E. Riechhoff, Appl. Phys. Lett. 9, 87 (1966).
[CrossRef]

Schools, R.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox in Optical and Electro-Optical Information Processing, J. T. Tippett, D. A. Berkowitz, L. C. Clapp, C. J. Koester, A. Vanderburgh, Eds. (MIT Press, Cambridge, Mass., 1965), Chap. 1.

Sincerbox, G.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox in Optical and Electro-Optical Information Processing, J. T. Tippett, D. A. Berkowitz, L. C. Clapp, C. J. Koester, A. Vanderburgh, Eds. (MIT Press, Cambridge, Mass., 1965), Chap. 1.

Stone, S. M.

V. J. Fowler, S. M. Stone, Laser Focus 3, 21 (1967).

Worrall, R. H.

R. H. Worrall, U.S. Patent No. 2,002,515, 28May1935.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

K. E. Riechhoff, Appl. Phys. Lett. 9, 87 (1966).
[CrossRef]

A. L. Bloom, Appl. Phys. Lett. 2, 101 (1963).
[CrossRef]

K. S. Pennington, L. H. Lin, Appl. Phys. Lett. 7, 56 (1965).
[CrossRef]

Electronics (1)

M. A. Habegger, T. J. Harris, Electronics 39, 84 (1966).

Laser Focus (1)

V. J. Fowler, S. M. Stone, Laser Focus 3, 21 (1967).

Other (3)

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox in Optical and Electro-Optical Information Processing, J. T. Tippett, D. A. Berkowitz, L. C. Clapp, C. J. Koester, A. Vanderburgh, Eds. (MIT Press, Cambridge, Mass., 1965), Chap. 1.

R. H. Worrall, U.S. Patent No. 2,002,515, 28May1935.

T. M. Lowry, Optical Rotatory Power (Dover Publications, Inc., New York, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Two-stage laser wavelength selection device.

Fig. 2
Fig. 2

(a) Rotational dispersion in quartz. (b) Typical rotation of linearly polarized light for different colors by a quartz plate 1-mm thick.

Fig. 3
Fig. 3

Polarization rotation of eight argon laser wavelengths by a 55-mm quartz rod.

Fig. 4
Fig. 4

Correction of polarization orientations to achieve minimal errors.

Fig. 5
Fig. 5

Wavelength selection device to separate six argon laser lines.

Fig. 6
Fig. 6

Arrangement of crystals in the device shown in Fig. 5.

Fig. 7
Fig. 7

(a) Rotation of six argon laser wavelengths by a 53.5-mm quartz rod. (b) Orientation of the 4657 Å, 4880 Å, and 5145 Å lines after passage through a 27-mm quartz rod. (c) Orientation of the 4765 Å, 5017 Å, and 5287 Å lines after passage through a 27-mm quartz rod. (d) Orientation of the 4657 Å and 5145 Å argon lines by a 13-mm quartz rod. (e) Orientation of the 4765 Å and 5287 Å argon lines by a 13-mm quartz rod.

Fig. 8
Fig. 8

A high efficiency laser wavelength discrimination device.

Fig. 9
Fig. 9

Orientation of the argon laser lines by the 49.96-mm quartz rod of the device shown in Fig. 8.

Fig. 10
Fig. 10

A device to separate, modulate, and combine three colors into a collinear beam.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

θ c = sin - 1 ( n oil / n e ) ,
T 3 = cos 2 θ 1 sin 2 θ 2 ,
ρ ( λ ) = [ 9.5639 / ( λ 2 - 0.0127493 ) ] - [ 2.3113 / ( λ 2 - 0.000974 ) ] - 0.1905 ,
θ t = 90 ρ i 10 k = 90 n i ,
θ l = Min [ θ i ] = n l · 90
n j = n i - n l .
r = gcd ( n j )
θ i = θ i / r = 90 n i / r = 90 n j / r + 90 ( n l / r ) = 90 n j / r + θ l / r , θ i = 90 n i + α ,
l = θ i / ρ i
Δ r / r = Δ θ i / θ i = Δ l / l .
θ i = 90 n i + α ± i θ i = 90 n i + α i .
i = i - γ ,
( i ) 2 = ( i - γ ) 2 = i 2 - 2 i γ + γ 2 .
( i ) 2 / γ = 0
i = 1 n ( - 2 i + 2 γ ) = 0 .
2 n γ = i = 1 n 2 i
γ = ( i = 1 n i ) / · u

Metrics