Abstract

Rapid scanning spectrometers have been designed and built that enable Raman spectra to be obtained in a very short time. The different techniques of laser excitation and photoelectric recording are compared: conventional scanning monochromators and photomultiplier detectors achieve oscillographic recording at spectral scanning speeds up to 1000 cm−1/sec; recent progress in photoelectrical devices permits simultaneous recording of the whole spectral region, by using image intensifier phototubes placed in the focal plane of high aperture grating spectrographs. With argon ion cw lasers, the Raman spectrum is usually recorded once every millisecond. With pulsed lasers, a high resolution spectrum is recorded for every pulse whose energy is in the 2–100-mJ region. Several examples of quickly evolving chemical reactions or instable species are given.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Delhaye, M. B. Delhaye-Buisset, Rev. Universelle des Mines 15, 481 (1959).
  2. M. Delhaye, Thèse, Lille, 1960.
  3. M. Crunelle-Cras, M. Delhaye, C. R. Acad. Sci. Paris 257, 2823 (1963).
  4. M. Bridoux, C. R. Acad. Sci. Paris 258, 5620 (1964); and C. R. Acad. Sci. Paris 261, 2079 (1965).
  5. M. Bridoux, Rev. d’Opt. 8, 389 (1967).
  6. D. J. Innes, A. L. Bloom, Tech. Bull. No. 5, Spectra-Physics Inc., Mountain View, California, August1966.
  7. M. Migeon, M. Delhaye, C. R. Acad. Sci. Paris 261, 2613 (1965), C. R. Acad. Sci. Paris 262, 702 (1966); C. R. Acad. Sci. Paris 262, 1513 (1966).
  8. G. B. Benedek, K. Fritsch, Phys. Rev. 149, 647 (1966).
    [CrossRef]
  9. M. Wallart, M. Delhaye, C. R. Acad. Sci. Paris (to be published in 1968).
  10. M. Bridoux, Thèse, Lille, (1966).
  11. M. Delhaye, Fourth Conference on Molecular Spectroscopy, Brighton (April 1968).

1967 (1)

M. Bridoux, Rev. d’Opt. 8, 389 (1967).

1966 (1)

G. B. Benedek, K. Fritsch, Phys. Rev. 149, 647 (1966).
[CrossRef]

1965 (1)

M. Migeon, M. Delhaye, C. R. Acad. Sci. Paris 261, 2613 (1965), C. R. Acad. Sci. Paris 262, 702 (1966); C. R. Acad. Sci. Paris 262, 1513 (1966).

1964 (1)

M. Bridoux, C. R. Acad. Sci. Paris 258, 5620 (1964); and C. R. Acad. Sci. Paris 261, 2079 (1965).

1963 (1)

M. Crunelle-Cras, M. Delhaye, C. R. Acad. Sci. Paris 257, 2823 (1963).

1959 (1)

M. Delhaye, M. B. Delhaye-Buisset, Rev. Universelle des Mines 15, 481 (1959).

Benedek, G. B.

G. B. Benedek, K. Fritsch, Phys. Rev. 149, 647 (1966).
[CrossRef]

Bloom, A. L.

D. J. Innes, A. L. Bloom, Tech. Bull. No. 5, Spectra-Physics Inc., Mountain View, California, August1966.

Bridoux, M.

M. Bridoux, Rev. d’Opt. 8, 389 (1967).

M. Bridoux, C. R. Acad. Sci. Paris 258, 5620 (1964); and C. R. Acad. Sci. Paris 261, 2079 (1965).

M. Bridoux, Thèse, Lille, (1966).

Crunelle-Cras, M.

M. Crunelle-Cras, M. Delhaye, C. R. Acad. Sci. Paris 257, 2823 (1963).

Delhaye, M.

M. Migeon, M. Delhaye, C. R. Acad. Sci. Paris 261, 2613 (1965), C. R. Acad. Sci. Paris 262, 702 (1966); C. R. Acad. Sci. Paris 262, 1513 (1966).

M. Crunelle-Cras, M. Delhaye, C. R. Acad. Sci. Paris 257, 2823 (1963).

M. Delhaye, M. B. Delhaye-Buisset, Rev. Universelle des Mines 15, 481 (1959).

M. Delhaye, Thèse, Lille, 1960.

M. Wallart, M. Delhaye, C. R. Acad. Sci. Paris (to be published in 1968).

M. Delhaye, Fourth Conference on Molecular Spectroscopy, Brighton (April 1968).

Delhaye-Buisset, M. B.

M. Delhaye, M. B. Delhaye-Buisset, Rev. Universelle des Mines 15, 481 (1959).

Fritsch, K.

G. B. Benedek, K. Fritsch, Phys. Rev. 149, 647 (1966).
[CrossRef]

Innes, D. J.

D. J. Innes, A. L. Bloom, Tech. Bull. No. 5, Spectra-Physics Inc., Mountain View, California, August1966.

Migeon, M.

M. Migeon, M. Delhaye, C. R. Acad. Sci. Paris 261, 2613 (1965), C. R. Acad. Sci. Paris 262, 702 (1966); C. R. Acad. Sci. Paris 262, 1513 (1966).

Wallart, M.

M. Wallart, M. Delhaye, C. R. Acad. Sci. Paris (to be published in 1968).

C. R. Acad. Sci. Paris (3)

M. Crunelle-Cras, M. Delhaye, C. R. Acad. Sci. Paris 257, 2823 (1963).

M. Bridoux, C. R. Acad. Sci. Paris 258, 5620 (1964); and C. R. Acad. Sci. Paris 261, 2079 (1965).

M. Migeon, M. Delhaye, C. R. Acad. Sci. Paris 261, 2613 (1965), C. R. Acad. Sci. Paris 262, 702 (1966); C. R. Acad. Sci. Paris 262, 1513 (1966).

Phys. Rev. (1)

G. B. Benedek, K. Fritsch, Phys. Rev. 149, 647 (1966).
[CrossRef]

Rev. d’Opt. (1)

M. Bridoux, Rev. d’Opt. 8, 389 (1967).

Rev. Universelle des Mines (1)

M. Delhaye, M. B. Delhaye-Buisset, Rev. Universelle des Mines 15, 481 (1959).

Other (5)

M. Delhaye, Thèse, Lille, 1960.

D. J. Innes, A. L. Bloom, Tech. Bull. No. 5, Spectra-Physics Inc., Mountain View, California, August1966.

M. Wallart, M. Delhaye, C. R. Acad. Sci. Paris (to be published in 1968).

M. Bridoux, Thèse, Lille, (1966).

M. Delhaye, Fourth Conference on Molecular Spectroscopy, Brighton (April 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Rapid scanning Raman laser spectrometer: A = sample holder and transfer plate; B = double monochromator of the PH I Coderg spectrometer; C = rapid scanning device; D = oscilloscope and recorder. The cover has been removed to show the scanning device.

Fig. 2
Fig. 2

Rapid scanning PH I spectrometer: isotopic structure of the 471-cm−1 Raman line of liquid BCl3. Laser He–Ne 180 mW; spectral slit width = 1 cm−1.

Fig. 3
Fig. 3

Rapid scanning PH I spectrometer: (a) very low frequencies in the Raman spectrum of HgI2 (powder); (b) modification of Raman spectra during the phase transformation yellow → red mercury di-iodide; (c) Raman spectrum of red HgI2.

Fig. 4
Fig. 4

Electron optical ultrafast Raman spectrograph: A = sample holder and transfer optics; B = high aperture grating spectrograph; C = solenoid and image intensifier phototube; D = vidicon camera.

Fig. 5
Fig. 5

Electron optical spectrograph. Photography of the phosphor screen of P 829 D phototube. Raman spectrum of azobenzene (solution of CCl4). Laser He–Ne 6328 Å, 40 mW. 2 msec.

Fig. 6
Fig. 6

Raman spectrum of liquid toluene: (a) conventional direct recording (Coderg CH I spectrometer), laser He–Ne 40 mW; (b) rapid recording with electron optical spectrograph (ruby laser—Siemens—6943 Å, pulse—total time, 0.5 msec; energy, 10 mJ).

Fig. 7
Fig. 7

Raman spectrum of bromine gas (20°C) excited by one flash of a ruby laser. Total energy = 1 J; recording time, 0.5 msec; phototube = P 829 D; and laser CGE.

Metrics