Abstract

An observation that a symmetrical configuration of off-axis paraboloidal mirrors produces an excellent image of an extended slit, while an unsymmetrical configuration produces poor images, has led to a modification of the original Sandia rapid scan spectrometer and to the design of a new wide range, rapid scan spectrometer. The new instrument employs a high speed rotating mirror in a Littrow arrangement to obtain a spectral scan speed double that of the original spectrometer; e.g., with a 600-lines/mm grating, a spectral scan speed of ~410 Å/μsec is obtained at 1000 rps. Techniques for obtaining an accurate calibration of the spectral scan speed are described, and some examples of spectra which were recorded from a xenon and a hydrogen plasma are shown.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Griem, A. C. Kolb, K. Y. Shen, Astrophys. J. 135, 272 (1962).
    [CrossRef]
  2. H. R. Griem, Plasma Spectroscopy (McGraw-Hill Book Company, Inc., New York, 1964).
  3. R. A. Hill, J. Quant. Spectrosc. Radiative Trans. 4, 857 (1964); J. Quant. Spectrosc. Radiative Trans. 7, 401 (1967).
    [CrossRef]
  4. R. A. Hill, E. H. Beckner, Appl. Opt. 3, 929 (1964).
    [CrossRef]
  5. C. Camm, R. L. Taylor, Bull. Amer. Phys. Soc. 10, 1145 (1965).
  6. I. Liberman, C. H. Church, J. A. Asars, Appl. Opt. 6, 279 (1967).
    [CrossRef] [PubMed]
  7. R. A. Hill, E. H. Beckner, J. Opt. Soc. Amer. 54, 572a (1964); R. A. Hill, Appl. Opt. 4, 1593 (1965).
    [CrossRef]
  8. H. Yoshimura, S. Hamada, S. Shiina, Jap. J. Appl. Phys. 3, 423 (1964).
    [CrossRef]
  9. N. J. Peacock, J. Cooper, J. R. Greig, Proc. Phys. Soc. London 83, 803 (1964).
    [CrossRef]
  10. R. A. Hill, R. D. Fellerhoff, J. Opt. Soc. Amer. 55, 1586a (1965); Appl. Opt. 5, 1105 (1966).
    [PubMed]
  11. C. H. Church, L. Gampel, Appl. Opt. 5, 241 (1966).
    [CrossRef] [PubMed]
  12. R. A. Hill, J. B. Gerardo, Phys. Rev. 162, 45 (1967).
    [CrossRef]
  13. M. Czerny, A. F. Turner, Z. Phys. 61, 792 (1930).
    [CrossRef]
  14. W. G. Fastie, J. Opt. Soc. Amer. 42, 641 (1952).
    [CrossRef]
  15. J. P. Chandler, available as Program 66 from Quantum Chemistry Program Exchange, Indiana University.

1967 (2)

1966 (1)

1965 (2)

R. A. Hill, R. D. Fellerhoff, J. Opt. Soc. Amer. 55, 1586a (1965); Appl. Opt. 5, 1105 (1966).
[PubMed]

C. Camm, R. L. Taylor, Bull. Amer. Phys. Soc. 10, 1145 (1965).

1964 (5)

R. A. Hill, E. H. Beckner, J. Opt. Soc. Amer. 54, 572a (1964); R. A. Hill, Appl. Opt. 4, 1593 (1965).
[CrossRef]

H. Yoshimura, S. Hamada, S. Shiina, Jap. J. Appl. Phys. 3, 423 (1964).
[CrossRef]

N. J. Peacock, J. Cooper, J. R. Greig, Proc. Phys. Soc. London 83, 803 (1964).
[CrossRef]

R. A. Hill, J. Quant. Spectrosc. Radiative Trans. 4, 857 (1964); J. Quant. Spectrosc. Radiative Trans. 7, 401 (1967).
[CrossRef]

R. A. Hill, E. H. Beckner, Appl. Opt. 3, 929 (1964).
[CrossRef]

1962 (1)

H. R. Griem, A. C. Kolb, K. Y. Shen, Astrophys. J. 135, 272 (1962).
[CrossRef]

1952 (1)

W. G. Fastie, J. Opt. Soc. Amer. 42, 641 (1952).
[CrossRef]

1930 (1)

M. Czerny, A. F. Turner, Z. Phys. 61, 792 (1930).
[CrossRef]

Asars, J. A.

Beckner, E. H.

R. A. Hill, E. H. Beckner, Appl. Opt. 3, 929 (1964).
[CrossRef]

R. A. Hill, E. H. Beckner, J. Opt. Soc. Amer. 54, 572a (1964); R. A. Hill, Appl. Opt. 4, 1593 (1965).
[CrossRef]

Camm, C.

C. Camm, R. L. Taylor, Bull. Amer. Phys. Soc. 10, 1145 (1965).

Chandler, J. P.

J. P. Chandler, available as Program 66 from Quantum Chemistry Program Exchange, Indiana University.

Church, C. H.

Cooper, J.

N. J. Peacock, J. Cooper, J. R. Greig, Proc. Phys. Soc. London 83, 803 (1964).
[CrossRef]

Czerny, M.

M. Czerny, A. F. Turner, Z. Phys. 61, 792 (1930).
[CrossRef]

Fastie, W. G.

W. G. Fastie, J. Opt. Soc. Amer. 42, 641 (1952).
[CrossRef]

Fellerhoff, R. D.

R. A. Hill, R. D. Fellerhoff, J. Opt. Soc. Amer. 55, 1586a (1965); Appl. Opt. 5, 1105 (1966).
[PubMed]

Gampel, L.

Gerardo, J. B.

R. A. Hill, J. B. Gerardo, Phys. Rev. 162, 45 (1967).
[CrossRef]

Greig, J. R.

N. J. Peacock, J. Cooper, J. R. Greig, Proc. Phys. Soc. London 83, 803 (1964).
[CrossRef]

Griem, H. R.

H. R. Griem, A. C. Kolb, K. Y. Shen, Astrophys. J. 135, 272 (1962).
[CrossRef]

H. R. Griem, Plasma Spectroscopy (McGraw-Hill Book Company, Inc., New York, 1964).

Hamada, S.

H. Yoshimura, S. Hamada, S. Shiina, Jap. J. Appl. Phys. 3, 423 (1964).
[CrossRef]

Hill, R. A.

R. A. Hill, J. B. Gerardo, Phys. Rev. 162, 45 (1967).
[CrossRef]

R. A. Hill, R. D. Fellerhoff, J. Opt. Soc. Amer. 55, 1586a (1965); Appl. Opt. 5, 1105 (1966).
[PubMed]

R. A. Hill, J. Quant. Spectrosc. Radiative Trans. 4, 857 (1964); J. Quant. Spectrosc. Radiative Trans. 7, 401 (1967).
[CrossRef]

R. A. Hill, E. H. Beckner, J. Opt. Soc. Amer. 54, 572a (1964); R. A. Hill, Appl. Opt. 4, 1593 (1965).
[CrossRef]

R. A. Hill, E. H. Beckner, Appl. Opt. 3, 929 (1964).
[CrossRef]

Kolb, A. C.

H. R. Griem, A. C. Kolb, K. Y. Shen, Astrophys. J. 135, 272 (1962).
[CrossRef]

Liberman, I.

Peacock, N. J.

N. J. Peacock, J. Cooper, J. R. Greig, Proc. Phys. Soc. London 83, 803 (1964).
[CrossRef]

Shen, K. Y.

H. R. Griem, A. C. Kolb, K. Y. Shen, Astrophys. J. 135, 272 (1962).
[CrossRef]

Shiina, S.

H. Yoshimura, S. Hamada, S. Shiina, Jap. J. Appl. Phys. 3, 423 (1964).
[CrossRef]

Taylor, R. L.

C. Camm, R. L. Taylor, Bull. Amer. Phys. Soc. 10, 1145 (1965).

Turner, A. F.

M. Czerny, A. F. Turner, Z. Phys. 61, 792 (1930).
[CrossRef]

Yoshimura, H.

H. Yoshimura, S. Hamada, S. Shiina, Jap. J. Appl. Phys. 3, 423 (1964).
[CrossRef]

Appl. Opt. (3)

Astrophys. J. (1)

H. R. Griem, A. C. Kolb, K. Y. Shen, Astrophys. J. 135, 272 (1962).
[CrossRef]

Bull. Amer. Phys. Soc. (1)

C. Camm, R. L. Taylor, Bull. Amer. Phys. Soc. 10, 1145 (1965).

J. Opt. Soc. Amer. (3)

R. A. Hill, E. H. Beckner, J. Opt. Soc. Amer. 54, 572a (1964); R. A. Hill, Appl. Opt. 4, 1593 (1965).
[CrossRef]

R. A. Hill, R. D. Fellerhoff, J. Opt. Soc. Amer. 55, 1586a (1965); Appl. Opt. 5, 1105 (1966).
[PubMed]

W. G. Fastie, J. Opt. Soc. Amer. 42, 641 (1952).
[CrossRef]

J. Quant. Spectrosc. Radiative Trans. (1)

R. A. Hill, J. Quant. Spectrosc. Radiative Trans. 4, 857 (1964); J. Quant. Spectrosc. Radiative Trans. 7, 401 (1967).
[CrossRef]

Jap. J. Appl. Phys. (1)

H. Yoshimura, S. Hamada, S. Shiina, Jap. J. Appl. Phys. 3, 423 (1964).
[CrossRef]

Phys. Rev. (1)

R. A. Hill, J. B. Gerardo, Phys. Rev. 162, 45 (1967).
[CrossRef]

Proc. Phys. Soc. London (1)

N. J. Peacock, J. Cooper, J. R. Greig, Proc. Phys. Soc. London 83, 803 (1964).
[CrossRef]

Z. Phys. (1)

M. Czerny, A. F. Turner, Z. Phys. 61, 792 (1930).
[CrossRef]

Other (2)

J. P. Chandler, available as Program 66 from Quantum Chemistry Program Exchange, Indiana University.

H. R. Griem, Plasma Spectroscopy (McGraw-Hill Book Company, Inc., New York, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Optical arrangement in the original rapid scan spectrometer; Si = slits, Pi = off-axis paraboloidal mirrors, Fi = flat mirrors, R = high speed rotating mirror, and G = plane diffraction grating. The slit length is normal to the plane of the figure. The image of the entrance slit S1 at the exit slit S2 is excellent along the full slit length (~20 mm). The image at the exit slit S3, however, is usable only along a length of ~1.5 mm. (b) Optical arrangement for the modified detector system. The image of S1 at the exit slit S3 is now excellent along the full slit length.

Fig. 2
Fig. 2

For a line source s normal to the figure, the symmetrical system (a) produces an undistorted image I, while the unsymmetrical system (b) produces a badly distorted image. The axes of these off-axis paraboloidal mirrors are denoted by the dashed lines.

Fig. 3
Fig. 3

Timing and firing sequence for the rapid scan spectrometer.

Fig. 4
Fig. 4

A portion of the xenon spectrum which was recorded at a rotor speed of ~400 rps and a sweep rate of 0.5 μsec/div. The effective slit width is 1.5 Å. The timing marks on the lower trace are derived from a 5-MHz crystal oscillator.

Fig. 5
Fig. 5

(a) A Stark broadened Hβ line profile recorded from a hydrogen plasma at a spectral scan speed of 83.65 Å/μsec. The central dip occurs due to the absence of a central (unshifted) Stark component. The half intensity width, 27.1 Å, corresponds to an electron density of 4.3 × 1016 cm−3. (b) The continuum on each side of Hβ, recorded at twenty times the sensitivity of (a). The intensity ratio of Hβ to 100 Å of continuum corresponds to an electron temperature of 21,000 K.

Fig. 6
Fig. 6

(a) The optical arrangement in the new spectrometer is based on the Littrow configuration; the off-axis paraboloidal mirror serves as both the collimator and camera mirror. The top half of the slit serves as the entrance slit, while the bottom half serves as the exit slit. (b) Monochromator parameters.

Tables (1)

Tables Icon

Table I Spectral Scan Speed Calibration at Hβ, λ4863

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n λ = d ( sin i + sin θ ) ,
λ / t θ = ( d / n ) cos i ( d i / d t ) = ( 4 π R d / n ) cos i ,
d λ / d t = ( 4 π R d / n ) [ 1 - ( n λ / d - sin θ ) 2 ] 1 2 .
λ i = A [ 1 - ( λ i / d - sin θ ) 2 ] 1 2 t i + λ 0 ,
λ = ( 2 d / n ) sin i ,
d λ / d t = ( 2 d / n ) cos i ( d i / d t ) = ( 8 π R d / n ) cos i .
d λ / d t = ( 8 π R d / n ) [ 1 - ( n λ / 2 d ) 2 ] 1 2 .
W g = ( N tan α + W b ) / ( cos θ + 0.5 sin θ tan α )

Metrics