Abstract

The Warsaw flash spectrophotometer, intended for measuring and recording a long series of spectra of a sample irradiated by a single flash is described. A flying spot is used as a light source in an electronically controlled monochromator. The highest scanning speed achieved with this method is 80 μsec per scan with 100-μsec repetition period (10,000 scans per second). The spectral range covered is 15,000–33,000 cm−1. A series of up to 200 spectra can be recorded within 20 msec and stored in a magnetic memory unit. Retrieval, reading, and evaluation of stored information, as well as the whole measurement, is highly automated. The spectrophotometer is intended for investigations of spectra and reaction kinetics of unstable photochemical intermediates and triplet states.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. D. Dmitrievskii, B. S. Neporeoit, V. A. Nikitin, Usp. Fiz. Nauk 64, 447 (1958).
    [CrossRef]
  2. K. Lacqua, W. D. Hagenah, in Proceedings of the Tenth Colloquium Spectroscopicum Internationale, E. R. Lippincott, M. Margoshes, Eds. (Spartan Book, Washington, D. C., 1963), p. 91.
  3. G. C. Pimentel, K. C. Herr, J. Chim. Phys. 61, 1509 (1964).
  4. K. C. Herr, G. A. Carlson, G. C. Pimentel, Kagaku no Ryoiki 21, 12 (1967).
  5. C. W. Hand, P. Z. Kaufmann, R. M. Hexter, Appl. Opt. 5, 1097 (1966).
    [CrossRef] [PubMed]
  6. O. D. Dmitrievskii, Opt. Spektrosk. 16, 1061 (1964) [Opt. Spectrosc. 16, 574 (1964)].
  7. O. D. Dmitrievskii, in Elementary Photoprocesses in Molecules (Nauka Press, Moscow, 1966), p. 176.
  8. A. H. Rosenthal, U.S. Pat.3,012,467, 12December1961.
  9. IBM (R. H. Kay), Jap. Pat.16, 993/66, 27September1966.
  10. E. Fünfer, F. Rössler, Z. Angew. Phys. 7, 131 (1955).
  11. R. E. Benn, W. S. Foote, C. T. Chase, J. Opt. Soc. Amer. 39, 529 (1949).
    [CrossRef]
  12. J. Koszewski, Z. R. Grabowski, Bull. Acad. Polon. Sci. Sér. Sci. Chim. 11, 165 (1963).
  13. J. Koszewski, Pomiary-Automatyka-Kontrola Warsaw, 589 (1963).
  14. J. Koszewski, Ph.D. Thesis, Institute of Physical Chemistry, Polish Academy of Science, Warsaw, 1964.
  15. Z. R. Grabowski, J. Koszewski, Pomiary-Automatyka-Kontrola Warsaw, 412 (1966).
  16. Z. R. Grabowski, J. Koszewski, Acta IMEKO-IV (1967), paper PO–155, in press.
  17. J. Koszewski, Z. R. Grabowski, Pomiary-Automatyka-Kontrola Warsaw, 425 (1966).

1967 (1)

K. C. Herr, G. A. Carlson, G. C. Pimentel, Kagaku no Ryoiki 21, 12 (1967).

1966 (3)

C. W. Hand, P. Z. Kaufmann, R. M. Hexter, Appl. Opt. 5, 1097 (1966).
[CrossRef] [PubMed]

Z. R. Grabowski, J. Koszewski, Pomiary-Automatyka-Kontrola Warsaw, 412 (1966).

J. Koszewski, Z. R. Grabowski, Pomiary-Automatyka-Kontrola Warsaw, 425 (1966).

1964 (2)

O. D. Dmitrievskii, Opt. Spektrosk. 16, 1061 (1964) [Opt. Spectrosc. 16, 574 (1964)].

G. C. Pimentel, K. C. Herr, J. Chim. Phys. 61, 1509 (1964).

1963 (2)

J. Koszewski, Z. R. Grabowski, Bull. Acad. Polon. Sci. Sér. Sci. Chim. 11, 165 (1963).

J. Koszewski, Pomiary-Automatyka-Kontrola Warsaw, 589 (1963).

1958 (1)

O. D. Dmitrievskii, B. S. Neporeoit, V. A. Nikitin, Usp. Fiz. Nauk 64, 447 (1958).
[CrossRef]

1955 (1)

E. Fünfer, F. Rössler, Z. Angew. Phys. 7, 131 (1955).

1949 (1)

R. E. Benn, W. S. Foote, C. T. Chase, J. Opt. Soc. Amer. 39, 529 (1949).
[CrossRef]

Benn, R. E.

R. E. Benn, W. S. Foote, C. T. Chase, J. Opt. Soc. Amer. 39, 529 (1949).
[CrossRef]

Carlson, G. A.

K. C. Herr, G. A. Carlson, G. C. Pimentel, Kagaku no Ryoiki 21, 12 (1967).

Chase, C. T.

R. E. Benn, W. S. Foote, C. T. Chase, J. Opt. Soc. Amer. 39, 529 (1949).
[CrossRef]

Dmitrievskii, O. D.

O. D. Dmitrievskii, Opt. Spektrosk. 16, 1061 (1964) [Opt. Spectrosc. 16, 574 (1964)].

O. D. Dmitrievskii, B. S. Neporeoit, V. A. Nikitin, Usp. Fiz. Nauk 64, 447 (1958).
[CrossRef]

O. D. Dmitrievskii, in Elementary Photoprocesses in Molecules (Nauka Press, Moscow, 1966), p. 176.

Foote, W. S.

R. E. Benn, W. S. Foote, C. T. Chase, J. Opt. Soc. Amer. 39, 529 (1949).
[CrossRef]

Fünfer, E.

E. Fünfer, F. Rössler, Z. Angew. Phys. 7, 131 (1955).

Grabowski, Z. R.

Z. R. Grabowski, J. Koszewski, Pomiary-Automatyka-Kontrola Warsaw, 412 (1966).

J. Koszewski, Z. R. Grabowski, Pomiary-Automatyka-Kontrola Warsaw, 425 (1966).

J. Koszewski, Z. R. Grabowski, Bull. Acad. Polon. Sci. Sér. Sci. Chim. 11, 165 (1963).

Z. R. Grabowski, J. Koszewski, Acta IMEKO-IV (1967), paper PO–155, in press.

Hagenah, W. D.

K. Lacqua, W. D. Hagenah, in Proceedings of the Tenth Colloquium Spectroscopicum Internationale, E. R. Lippincott, M. Margoshes, Eds. (Spartan Book, Washington, D. C., 1963), p. 91.

Hand, C. W.

Herr, K. C.

K. C. Herr, G. A. Carlson, G. C. Pimentel, Kagaku no Ryoiki 21, 12 (1967).

G. C. Pimentel, K. C. Herr, J. Chim. Phys. 61, 1509 (1964).

Hexter, R. M.

Kaufmann, P. Z.

Kay, R. H.

IBM (R. H. Kay), Jap. Pat.16, 993/66, 27September1966.

Koszewski, J.

J. Koszewski, Z. R. Grabowski, Pomiary-Automatyka-Kontrola Warsaw, 425 (1966).

Z. R. Grabowski, J. Koszewski, Pomiary-Automatyka-Kontrola Warsaw, 412 (1966).

J. Koszewski, Pomiary-Automatyka-Kontrola Warsaw, 589 (1963).

J. Koszewski, Z. R. Grabowski, Bull. Acad. Polon. Sci. Sér. Sci. Chim. 11, 165 (1963).

J. Koszewski, Ph.D. Thesis, Institute of Physical Chemistry, Polish Academy of Science, Warsaw, 1964.

Z. R. Grabowski, J. Koszewski, Acta IMEKO-IV (1967), paper PO–155, in press.

Lacqua, K.

K. Lacqua, W. D. Hagenah, in Proceedings of the Tenth Colloquium Spectroscopicum Internationale, E. R. Lippincott, M. Margoshes, Eds. (Spartan Book, Washington, D. C., 1963), p. 91.

Neporeoit, B. S.

O. D. Dmitrievskii, B. S. Neporeoit, V. A. Nikitin, Usp. Fiz. Nauk 64, 447 (1958).
[CrossRef]

Nikitin, V. A.

O. D. Dmitrievskii, B. S. Neporeoit, V. A. Nikitin, Usp. Fiz. Nauk 64, 447 (1958).
[CrossRef]

Pimentel, G. C.

K. C. Herr, G. A. Carlson, G. C. Pimentel, Kagaku no Ryoiki 21, 12 (1967).

G. C. Pimentel, K. C. Herr, J. Chim. Phys. 61, 1509 (1964).

Rosenthal, A. H.

A. H. Rosenthal, U.S. Pat.3,012,467, 12December1961.

Rössler, F.

E. Fünfer, F. Rössler, Z. Angew. Phys. 7, 131 (1955).

Appl. Opt. (1)

Bull. Acad. Polon. Sci. Sér. Sci. Chim. (1)

J. Koszewski, Z. R. Grabowski, Bull. Acad. Polon. Sci. Sér. Sci. Chim. 11, 165 (1963).

J. Chim. Phys. (1)

G. C. Pimentel, K. C. Herr, J. Chim. Phys. 61, 1509 (1964).

J. Opt. Soc. Amer. (1)

R. E. Benn, W. S. Foote, C. T. Chase, J. Opt. Soc. Amer. 39, 529 (1949).
[CrossRef]

Kagaku no Ryoiki (1)

K. C. Herr, G. A. Carlson, G. C. Pimentel, Kagaku no Ryoiki 21, 12 (1967).

Opt. Spektrosk. (1)

O. D. Dmitrievskii, Opt. Spektrosk. 16, 1061 (1964) [Opt. Spectrosc. 16, 574 (1964)].

Pomiary-Automatyka-Kontrola Warsaw (3)

J. Koszewski, Pomiary-Automatyka-Kontrola Warsaw, 589 (1963).

Z. R. Grabowski, J. Koszewski, Pomiary-Automatyka-Kontrola Warsaw, 412 (1966).

J. Koszewski, Z. R. Grabowski, Pomiary-Automatyka-Kontrola Warsaw, 425 (1966).

Usp. Fiz. Nauk (1)

O. D. Dmitrievskii, B. S. Neporeoit, V. A. Nikitin, Usp. Fiz. Nauk 64, 447 (1958).
[CrossRef]

Z. Angew. Phys. (1)

E. Fünfer, F. Rössler, Z. Angew. Phys. 7, 131 (1955).

Other (6)

J. Koszewski, Ph.D. Thesis, Institute of Physical Chemistry, Polish Academy of Science, Warsaw, 1964.

Z. R. Grabowski, J. Koszewski, Acta IMEKO-IV (1967), paper PO–155, in press.

K. Lacqua, W. D. Hagenah, in Proceedings of the Tenth Colloquium Spectroscopicum Internationale, E. R. Lippincott, M. Margoshes, Eds. (Spartan Book, Washington, D. C., 1963), p. 91.

O. D. Dmitrievskii, in Elementary Photoprocesses in Molecules (Nauka Press, Moscow, 1966), p. 176.

A. H. Rosenthal, U.S. Pat.3,012,467, 12December1961.

IBM (R. H. Kay), Jap. Pat.16, 993/66, 27September1966.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

General principle of an electronically controlled monochromator: CRT = cathode ray tube; ES = exit slit.

Fig. 2
Fig. 2

The optical system of the Lambda–2 flash spectrophotometer: LS = path of the luminous spot; M1, M4 = plane mirrors; M2 = concave mirror; M3 = wedge mirror beam splitter; M5 = double plane mirrors; P1 = 60° quartz prism; P2 = rear face aluminized 30° quartz prism; ES = exit slit; L = lenses; SD = slit diaphragms; C = autocollimative optical reaction cell; PM = twin photomultipliers; FL = flash discharge lamp; and R = quartz tube outside aluminized mirror reflector.

Fig. 3
Fig. 3

Block diagram of the Lambda–2 flash spectrophotometer: L1 = flying-spot cathode ray tube; 1 = monochromator; 2 = detection and correction unit; 3 = memory unit; 4 = control and coordination unit; 5 = flash supply unit; 6 = readout monitor unit; 7 = portable test monitor; 8 = flying-spot unit; λ = wavelength marker unit; F = flash discharge tube; K = photon detector; and E = integrating flash energy meter.

Fig. 4
Fig. 4

Timing waveforms and signals, illustrating the successive stages of the measurement process. From the top to the bottom: Recording: (1) 1 sec after pushing the button start the signal s opens a selector gate for 40 msec, i.e., for a full single turn of the set of magnetic heads; (2) at a defined angular position during this turn the signal α0 is generated by the rotating set of the memory unit, opening the selector gate for 20-msec recording; simultaneously the electron beam in the CRT is switched on, keeping the flying-spot light source at peak brilliance during the 20-msec recording; (3) periodic deflection current from the flying-spot unit; (4) test photomultiplier output signals (successive spectra); (5) photomultipliers blocking gate for the duration time of the flash discharge. Readout: (1) the α0 signal, evenly coded to discriminate between signals, and the single selecting signals opening the gates for every stored spectrum; (2) spectra readout of the tape; (3) adjustable monitor gates selecting spectra for display; (4) time base signals for displaying the selected spectra on the readout monitor.

Fig. 5
Fig. 5

The rotating set of magnetic heads and a fixed strained magnetic tape.

Fig. 6
Fig. 6

Block diagram of the magnetic memory unit: s = starting signal for the selector gate (compare Fig. 4); α0 = signal sent periodically (once a turn) by the rotating set of magnetic heads; FMo = frequency modulator controlled by the output signals of the test photomultiplier; M = mixer; D = FM detector. At the input and output of the set of magnetic heads: at left, synchronization channel; at right, measurement channel.

Fig. 7
Fig. 7

Standard testing step signals, at 5000/sec repetition rate: (a) a set of recorded signals with a 200-μsec interval; (b) single signal after passing the whole measurement and readout channel with exception of magnetic recording; (c) the same as (b) but recorded and later read out from the magnetic storage.

Fig. 8
Fig. 8

Spectra scanned 5000 times/second: (a) and (c) neodymium glass at different wavelengths; (b) holmium perchlorate solution. Transmittance against air.

Fig. 9
Fig. 9

Comparison of the measured signals displayed at the monitor: without recording (upper row), and readout of the storage unit (below): (a) 100% transmittance line; (b) transmission spectrum of an interference filter, λmax 400 nm; (c) spectrum of Ho(ClO4)3 solution in the 375–425 nm range. All spectra scanned at 130-μsec scan time, 200-μsec repetition interval. The readout curves contain instantaneous distortions due to the photomultiplier noise, as recorded in the memory unit.

Fig. 10
Fig. 10

Display of the stored signals: (a) two spectra chosen from a stored set compared on the monitor screen; (b) flash discharge, as recorded from the scattered light by the test photomultiplier on a time base of 130 μsec.

Fig. 11
Fig. 11

Lambda–2 spectrophotometer signal processing units. From left to right: control and coordination unit; readout monitor unit with the main control panel; magnetic memory unit; frequency modulation equipment; detection and correction unit.

Fig. 12
Fig. 12

Lambda–2 spectrometer measuring units. From left to right: photomultipliers; sample and reference cells with flash tube, reflector, etc.; flying-spot cathode ray tube; monochromator (in vertical tube); portable test monitor and (below) flying-spot unit; behind, scarcely visible, the flash supply unit.

Metrics