Abstract

Improvements in a rapid scan ir spectrometer used for flash photolysis–kinetic spectroscopy are described. The scanning mechanism now regularly operates at a repetition rate of 20,000 scans/sec; the photolysis flash has a half-time of 7.5 μsec, with energy up to 2940 J, and at 1500 J it yields 5 × 1018 quanta/flash; the spectroscopic light source operates with a brightness temperature of 2400 K. The relationship between spectral resolution and scanning speed is quantitatively discussed.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Hand, R. M. Hexter, P. Z. Kaufmanu, Appl. Opt. 5, 1097 (1966).
    [CrossRef] [PubMed]
  2. J. K. Landré, Rev. Sci. Instrum. 35, 796 (1964).
    [CrossRef]
  3. C. G. Hatchard, C. A. Parker, Proc. Roy. Soc. London, A235, 518 (1956).
  4. L. Lindqvist, Rev. Sci. Instrum. 35, 993 (1964).
    [CrossRef]
  5. R. Spanbauer, P. E. Fraley, K. N. Rao, Appl. Opt. 2, 1340 (1963).
    [CrossRef]
  6. R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra (John Wiley & Sons, Inc., New York, 1950).
  7. T. Morrow, W. D. McGrath, Trans. Faraday Soc. 62, 642 (1966).
    [CrossRef]
  8. E. C. Y. Inn, Y. Tanaka, J. Opt. Soc. Amer. 43, 870 (1953).
    [CrossRef]
  9. W. B. DeMore, O. F. Raper, J. Chem. Phys. 44, 1780 (1966).
    [CrossRef]
  10. N. Basco, Proc. Roy. Soc. London 283A, 302 (1965).
  11. P. W. Kruse, L. D. McGlauchlin, R. B. McQuistan, Elements of Infrared Technology (John Wiley & Sons, Inc., New York, 1962), p. 428.
  12. J. T. Yardley, C. B. Moore, Appl. Phys. Lett. 7, 311 (1965).
    [CrossRef]
  13. K. C. Herr, G. C. Pimentel, Appl. Opt. 4, 25 (1965).
    [CrossRef]
  14. G. C. Pimentel, Pure Appl. Chem. 11, 563 (1965).
    [CrossRef]
  15. G. A. Carlson, G. C. Pimentel, J. Chem. Phys. 44, 4053 (1966).
    [CrossRef]
  16. J. Herr, G. C. Pimentel, private communication.

1966 (4)

C. W. Hand, R. M. Hexter, P. Z. Kaufmanu, Appl. Opt. 5, 1097 (1966).
[CrossRef] [PubMed]

W. B. DeMore, O. F. Raper, J. Chem. Phys. 44, 1780 (1966).
[CrossRef]

T. Morrow, W. D. McGrath, Trans. Faraday Soc. 62, 642 (1966).
[CrossRef]

G. A. Carlson, G. C. Pimentel, J. Chem. Phys. 44, 4053 (1966).
[CrossRef]

1965 (4)

N. Basco, Proc. Roy. Soc. London 283A, 302 (1965).

J. T. Yardley, C. B. Moore, Appl. Phys. Lett. 7, 311 (1965).
[CrossRef]

K. C. Herr, G. C. Pimentel, Appl. Opt. 4, 25 (1965).
[CrossRef]

G. C. Pimentel, Pure Appl. Chem. 11, 563 (1965).
[CrossRef]

1964 (2)

J. K. Landré, Rev. Sci. Instrum. 35, 796 (1964).
[CrossRef]

L. Lindqvist, Rev. Sci. Instrum. 35, 993 (1964).
[CrossRef]

1963 (1)

1956 (1)

C. G. Hatchard, C. A. Parker, Proc. Roy. Soc. London, A235, 518 (1956).

1953 (1)

E. C. Y. Inn, Y. Tanaka, J. Opt. Soc. Amer. 43, 870 (1953).
[CrossRef]

Basco, N.

N. Basco, Proc. Roy. Soc. London 283A, 302 (1965).

Carlson, G. A.

G. A. Carlson, G. C. Pimentel, J. Chem. Phys. 44, 4053 (1966).
[CrossRef]

DeMore, W. B.

W. B. DeMore, O. F. Raper, J. Chem. Phys. 44, 1780 (1966).
[CrossRef]

Fraley, P. E.

Gaydon, A. G.

R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra (John Wiley & Sons, Inc., New York, 1950).

Hand, C. W.

Hatchard, C. G.

C. G. Hatchard, C. A. Parker, Proc. Roy. Soc. London, A235, 518 (1956).

Herr, J.

J. Herr, G. C. Pimentel, private communication.

Herr, K. C.

Hexter, R. M.

Inn, E. C. Y.

E. C. Y. Inn, Y. Tanaka, J. Opt. Soc. Amer. 43, 870 (1953).
[CrossRef]

Kaufmanu, P. Z.

Kruse, P. W.

P. W. Kruse, L. D. McGlauchlin, R. B. McQuistan, Elements of Infrared Technology (John Wiley & Sons, Inc., New York, 1962), p. 428.

Landré, J. K.

J. K. Landré, Rev. Sci. Instrum. 35, 796 (1964).
[CrossRef]

Lindqvist, L.

L. Lindqvist, Rev. Sci. Instrum. 35, 993 (1964).
[CrossRef]

McGlauchlin, L. D.

P. W. Kruse, L. D. McGlauchlin, R. B. McQuistan, Elements of Infrared Technology (John Wiley & Sons, Inc., New York, 1962), p. 428.

McGrath, W. D.

T. Morrow, W. D. McGrath, Trans. Faraday Soc. 62, 642 (1966).
[CrossRef]

McQuistan, R. B.

P. W. Kruse, L. D. McGlauchlin, R. B. McQuistan, Elements of Infrared Technology (John Wiley & Sons, Inc., New York, 1962), p. 428.

Moore, C. B.

J. T. Yardley, C. B. Moore, Appl. Phys. Lett. 7, 311 (1965).
[CrossRef]

Morrow, T.

T. Morrow, W. D. McGrath, Trans. Faraday Soc. 62, 642 (1966).
[CrossRef]

Parker, C. A.

C. G. Hatchard, C. A. Parker, Proc. Roy. Soc. London, A235, 518 (1956).

Pearse, R. W. B.

R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra (John Wiley & Sons, Inc., New York, 1950).

Pimentel, G. C.

G. A. Carlson, G. C. Pimentel, J. Chem. Phys. 44, 4053 (1966).
[CrossRef]

G. C. Pimentel, Pure Appl. Chem. 11, 563 (1965).
[CrossRef]

K. C. Herr, G. C. Pimentel, Appl. Opt. 4, 25 (1965).
[CrossRef]

J. Herr, G. C. Pimentel, private communication.

Rao, K. N.

Raper, O. F.

W. B. DeMore, O. F. Raper, J. Chem. Phys. 44, 1780 (1966).
[CrossRef]

Spanbauer, R.

Tanaka, Y.

E. C. Y. Inn, Y. Tanaka, J. Opt. Soc. Amer. 43, 870 (1953).
[CrossRef]

Yardley, J. T.

J. T. Yardley, C. B. Moore, Appl. Phys. Lett. 7, 311 (1965).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

J. T. Yardley, C. B. Moore, Appl. Phys. Lett. 7, 311 (1965).
[CrossRef]

J. Chem. Phys. (2)

G. A. Carlson, G. C. Pimentel, J. Chem. Phys. 44, 4053 (1966).
[CrossRef]

W. B. DeMore, O. F. Raper, J. Chem. Phys. 44, 1780 (1966).
[CrossRef]

J. Opt. Soc. Amer. (1)

E. C. Y. Inn, Y. Tanaka, J. Opt. Soc. Amer. 43, 870 (1953).
[CrossRef]

Proc. Roy. Soc. London (2)

C. G. Hatchard, C. A. Parker, Proc. Roy. Soc. London, A235, 518 (1956).

N. Basco, Proc. Roy. Soc. London 283A, 302 (1965).

Pure Appl. Chem. (1)

G. C. Pimentel, Pure Appl. Chem. 11, 563 (1965).
[CrossRef]

Rev. Sci. Instrum. (2)

L. Lindqvist, Rev. Sci. Instrum. 35, 993 (1964).
[CrossRef]

J. K. Landré, Rev. Sci. Instrum. 35, 796 (1964).
[CrossRef]

Trans. Faraday Soc. (1)

T. Morrow, W. D. McGrath, Trans. Faraday Soc. 62, 642 (1966).
[CrossRef]

Other (3)

R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra (John Wiley & Sons, Inc., New York, 1950).

P. W. Kruse, L. D. McGlauchlin, R. B. McQuistan, Elements of Infrared Technology (John Wiley & Sons, Inc., New York, 1962), p. 428.

J. Herr, G. C. Pimentel, private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Comparison of hohlraum and Nernst glower intensities in the near ir. The absorption bands at 2.7 μ, 4.2 μ, and 6 μ are due to atmospheric CO2 and H2O. The upper trace is the hohlraum and the lower is a Nernst glower. The spectrometer parameters are NaCl prism, slits 0.25 mm, 5000 scans/sec, and scope sweep speed 5 μsec/cm.

Fig. 2
Fig. 2

Photolysis of O3–C2N2–Ar mixtures. Sample: 0.7-Torr O3, 5.0 Torr C2N2, 19 Torr Ar; LiF prism, 0.5-mm slits, 16.5-m optical path length. Flash energy, 1500 J, set off 17 μsec before the second scan. Scope: 10 mV/cm, 1 μsec/cm. Scan rate, 20.0 kiloscans/sec. The absorption bands in the before scan are due to atmospheric CO2 (2350 cm−1), C2N2 (2149 and 2090 cm−1), and O3 (2105 cm−1). The postflash spectra show an additional absorption band, at 2205 ± 10 cm−1, owing to an unknown transient species produced in the photolysis.

Tables (1)

Tables Icon

Table I Energy Limited Resolution for Rapid Scan Spectroscopy

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

CF 3 I h ν CF 3 + I ,
2 CF 3 C 2 F 6 ,

Metrics