Abstract

Procedures are described for simplifying the computation of detector responsivity (output per unit input) from known detector calibration data. These procedures involve the computation, tabulation, and use of certain dimensionless spectral matching factor ratios. These ratios effectively express the relative degree of overlap occurring between the spectral response distribution of the detector and the spectral distribution of the incident flux to be detected. All three basic systems of units for expressing detector responsivity (A/W, A/lm, and electrons/photon) are considered.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. American Standard 62 IRE 7.S1 “Methods of Testing Electron Tubes,” American Standards Association (1963).
  2. L. M. Biberman, Appl. Opt. 6, 1127 (1967).
    [CrossRef] [PubMed]
  3. F. H. Barr, E. H. Eberhardt, Appl. Opt. 6, 1575 (1967).
    [CrossRef] [PubMed]
  4. “Relative Spectral Response Data for Photosensitive Devices, S-curves,” Electronic Industries Association Publication No. 50 (1964).
  5. M. Pivovonsky, M. R. Nagel, Tables of Blackbody Radiation Functions (The Macmillan Company, New York, 1961).
  6. R. W. Engstrom, RCA Rev. 21, 184 (1960).
  7. J. E. Kaufman, Ed., Illuminating Engineering Society Lighting Handbook (Illuminating Engineering Society, New York, 1966), Fig. 3–2.
  8. R. C. Jones, J. Opt. Soc. Amer. 53, 1314 (1963).
    [CrossRef]
  9. Electronic Industries Association Standard No. RS–268, Electronic Industries Association, Washington, D.C. (1963).
  10. A. C. Hardy, F. H. Perrin, Principles of Optics (McGraw-Hill Book Company, Inc., New York, 1932), Sec. 108.
  11. W. L. Wolfe, Ed., “Handbook of Military Infrared Technology,” Sec. 3.2.1 (Office of Naval Research, Dept. of the Navy, Wash., D.C., 1955).
  12. J. C. deVos, Phys. 20, 690 (1954).
  13. R. W. Engstrom, RCA Rev. 16, 116 (1955).
  14. B. T. Barnes, W. E. Forsythe, J. Opt. Soc. Amer. 26, 313 (1936).
    [CrossRef]
  15. R. Davis, K. S. Gibson, G. W. Haupt. J. Opt. Soc. Amer. 43, 172 (1953).
    [CrossRef]
  16. G. A. W. Rutgers, J. C. deVos, Phys. 20, 715 (1954).
  17. D. B. Judd, J. Res. Nat. Bur. Stand. 44, 1 (1950).
  18. Ref. 5, p. xvii.
  19. W. E. Forsythe, International Critical Tables V (McGraw-Hill Book Company, Inc., New York, 1929), p. 246.
  20. R. Stair, W. E. Schneider, W. B. Fussel, Appl. Opt. 6, 101 (1967).
    [CrossRef] [PubMed]
  21. H. K. Hammond, Appl. Opt. 7, 985 (1968).
    [CrossRef]
  22. “Optical Characteristics of Cathode Ray Tube Screens,” Electronic Industries Association Publ. No. 16 (1960).
  23. Radio Corporation of America, Publ. No. TPM- 1508 (1957).
  24. Harshaw Chemical Co., Publ. No. D–6458 (1960).
  25. General Electric Co., Bull. LD–2 (1960).
  26. Handbook of Geophysics (Macmillan and Co., London, 1960), Chap. 18.
  27. D. M. Gates, Science 151, 523 (1966).
    [CrossRef] [PubMed]
  28. Weston Instrument Co., Cir. B–200–11/46.
  29. H. W. Leverenz, Luminescence of Solids (John Wiley & Sons, Inc., New York, 1950), p. 443.

1968 (1)

1967 (3)

1966 (1)

D. M. Gates, Science 151, 523 (1966).
[CrossRef] [PubMed]

1964 (1)

“Relative Spectral Response Data for Photosensitive Devices, S-curves,” Electronic Industries Association Publication No. 50 (1964).

1963 (1)

R. C. Jones, J. Opt. Soc. Amer. 53, 1314 (1963).
[CrossRef]

1960 (4)

R. W. Engstrom, RCA Rev. 21, 184 (1960).

“Optical Characteristics of Cathode Ray Tube Screens,” Electronic Industries Association Publ. No. 16 (1960).

Harshaw Chemical Co., Publ. No. D–6458 (1960).

General Electric Co., Bull. LD–2 (1960).

1957 (1)

Radio Corporation of America, Publ. No. TPM- 1508 (1957).

1955 (1)

R. W. Engstrom, RCA Rev. 16, 116 (1955).

1954 (2)

J. C. deVos, Phys. 20, 690 (1954).

G. A. W. Rutgers, J. C. deVos, Phys. 20, 715 (1954).

1953 (1)

R. Davis, K. S. Gibson, G. W. Haupt. J. Opt. Soc. Amer. 43, 172 (1953).
[CrossRef]

1950 (1)

D. B. Judd, J. Res. Nat. Bur. Stand. 44, 1 (1950).

1936 (1)

B. T. Barnes, W. E. Forsythe, J. Opt. Soc. Amer. 26, 313 (1936).
[CrossRef]

Barnes, B. T.

B. T. Barnes, W. E. Forsythe, J. Opt. Soc. Amer. 26, 313 (1936).
[CrossRef]

Barr, F. H.

Biberman, L. M.

Davis, R.

R. Davis, K. S. Gibson, G. W. Haupt. J. Opt. Soc. Amer. 43, 172 (1953).
[CrossRef]

deVos, J. C.

J. C. deVos, Phys. 20, 690 (1954).

G. A. W. Rutgers, J. C. deVos, Phys. 20, 715 (1954).

Eberhardt, E. H.

Engstrom, R. W.

R. W. Engstrom, RCA Rev. 21, 184 (1960).

R. W. Engstrom, RCA Rev. 16, 116 (1955).

Forsythe, W. E.

B. T. Barnes, W. E. Forsythe, J. Opt. Soc. Amer. 26, 313 (1936).
[CrossRef]

W. E. Forsythe, International Critical Tables V (McGraw-Hill Book Company, Inc., New York, 1929), p. 246.

Fussel, W. B.

Gates, D. M.

D. M. Gates, Science 151, 523 (1966).
[CrossRef] [PubMed]

Gibson, K. S.

R. Davis, K. S. Gibson, G. W. Haupt. J. Opt. Soc. Amer. 43, 172 (1953).
[CrossRef]

Hammond, H. K.

Hardy, A. C.

A. C. Hardy, F. H. Perrin, Principles of Optics (McGraw-Hill Book Company, Inc., New York, 1932), Sec. 108.

Haupt, G. W.

R. Davis, K. S. Gibson, G. W. Haupt. J. Opt. Soc. Amer. 43, 172 (1953).
[CrossRef]

Jones, R. C.

R. C. Jones, J. Opt. Soc. Amer. 53, 1314 (1963).
[CrossRef]

Judd, D. B.

D. B. Judd, J. Res. Nat. Bur. Stand. 44, 1 (1950).

Leverenz, H. W.

H. W. Leverenz, Luminescence of Solids (John Wiley & Sons, Inc., New York, 1950), p. 443.

Nagel, M. R.

M. Pivovonsky, M. R. Nagel, Tables of Blackbody Radiation Functions (The Macmillan Company, New York, 1961).

Perrin, F. H.

A. C. Hardy, F. H. Perrin, Principles of Optics (McGraw-Hill Book Company, Inc., New York, 1932), Sec. 108.

Pivovonsky, M.

M. Pivovonsky, M. R. Nagel, Tables of Blackbody Radiation Functions (The Macmillan Company, New York, 1961).

Rutgers, G. A. W.

G. A. W. Rutgers, J. C. deVos, Phys. 20, 715 (1954).

Schneider, W. E.

Stair, R.

Appl. Opt. (4)

Bull. LD–2 (1)

General Electric Co., Bull. LD–2 (1960).

Electronic Industries Association Publ. No. 16 (1)

“Optical Characteristics of Cathode Ray Tube Screens,” Electronic Industries Association Publ. No. 16 (1960).

Electronic Industries Association Publication No. 50 (1)

“Relative Spectral Response Data for Photosensitive Devices, S-curves,” Electronic Industries Association Publication No. 50 (1964).

J. Opt. Soc. Amer. (3)

R. C. Jones, J. Opt. Soc. Amer. 53, 1314 (1963).
[CrossRef]

B. T. Barnes, W. E. Forsythe, J. Opt. Soc. Amer. 26, 313 (1936).
[CrossRef]

R. Davis, K. S. Gibson, G. W. Haupt. J. Opt. Soc. Amer. 43, 172 (1953).
[CrossRef]

J. Res. Nat. Bur. Stand. (1)

D. B. Judd, J. Res. Nat. Bur. Stand. 44, 1 (1950).

Phys. (2)

G. A. W. Rutgers, J. C. deVos, Phys. 20, 715 (1954).

J. C. deVos, Phys. 20, 690 (1954).

Publ. No. D–6458 (1)

Harshaw Chemical Co., Publ. No. D–6458 (1960).

Publ. No. TPM- 1508 (1)

Radio Corporation of America, Publ. No. TPM- 1508 (1957).

RCA Rev. (2)

R. W. Engstrom, RCA Rev. 16, 116 (1955).

R. W. Engstrom, RCA Rev. 21, 184 (1960).

Science (1)

D. M. Gates, Science 151, 523 (1966).
[CrossRef] [PubMed]

Other (11)

Weston Instrument Co., Cir. B–200–11/46.

H. W. Leverenz, Luminescence of Solids (John Wiley & Sons, Inc., New York, 1950), p. 443.

American Standard 62 IRE 7.S1 “Methods of Testing Electron Tubes,” American Standards Association (1963).

Handbook of Geophysics (Macmillan and Co., London, 1960), Chap. 18.

J. E. Kaufman, Ed., Illuminating Engineering Society Lighting Handbook (Illuminating Engineering Society, New York, 1966), Fig. 3–2.

M. Pivovonsky, M. R. Nagel, Tables of Blackbody Radiation Functions (The Macmillan Company, New York, 1961).

Electronic Industries Association Standard No. RS–268, Electronic Industries Association, Washington, D.C. (1963).

A. C. Hardy, F. H. Perrin, Principles of Optics (McGraw-Hill Book Company, Inc., New York, 1932), Sec. 108.

W. L. Wolfe, Ed., “Handbook of Military Infrared Technology,” Sec. 3.2.1 (Office of Naval Research, Dept. of the Navy, Wash., D.C., 1955).

Ref. 5, p. xvii.

W. E. Forsythe, International Critical Tables V (McGraw-Hill Book Company, Inc., New York, 1929), p. 246.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Typical overlapping spectral distributions, illustrating the magnitude of a spectral matching factor α for an S11 photocathode and a P20 phosphor screen.

Fig. 2
Fig. 2

Typical output spectral efficiency characteristics of aluminized phosphor screens. The relative spectral distribution for each curve conforms to registered22 P response data. The integrated absolute spectral efficiency for each curve appears in Table II. A linear conversion process29 is assumed between radiated power and phosphor-absorbed electron beam power (the incident electron beam power minus the power loss in the metallic overlay). The curves are most accurate between 5 kV and 15 kV and for metallic overlay losses between 1 kV and 2 kV.

Fig. 3
Fig. 3

Typical responsivity characteristics of photocathodes. The relative spectral distribution of each of the plotted curves conforms to registered4 S response data. The integral luminous responsivity and the integral radiometric responsivity for each curve for 2870°K radiation are tabulated in Table III.

Tables (8)

Tables Icon

Table I Spectral Matching Factors

Tables Icon

Table II Typical Peak and Integral Spectral Efficiency of Aluminized Phosphor Screens

Tables Icon

Table III Peak Monochromatic and Integral Responsivity of Typical Photocathodes

Tables Icon

Table IV Change in Luminous Responsivity with Flux Source RL/RL (cal) (2870°K calibrating lampa)

Tables Icon

Table V Radiometric–Photometric Equivalents

Tables Icon

Table VI Spectral Matching Factor and Filter Factor for Various Detector–Filter Combinations (2870°K Source)

Tables Icon

Table VII Spectral Matching Factors, Quartz Window Thermopile vs Various Calibrating Flux Sourcesa

Tables Icon

Table VIII Calculated Relative Spectral Distribution of 2870°/2854°K Color Temperature Tungsten Filament Lamp (See Text)

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

R = I / F .
R L ( A / Im ) = I / F L ( 2870° K radiation ) ,
F = w p 0 ω λ d λ ,
I = s p w p 0 σ λ ω λ d λ .
R = s p 0 σ λ ω λ d λ / 0 ω λ d λ .
α = 0 σ λ ω λ d λ / 0 ω λ d λ
R = s p α .
F L = 680 w p 0 V λ ω λ ( cal ) d λ .
R L ( cal ) = s p 0 σ λ ω λ ( cal ) d λ 680 0 V λ ω λ ( cal ) d λ = s p α ( det , cal ) 680 α ( eye , cal ) .
I 2 / I 1 = 1 ( V 1 - V d 1 ) γ α 1 , 2 s p 2 .
R L R L ( cal ) = α ( det , ω λ ) α ( eye , cal ) α ( eye , ω λ ) α ( det , cal ) ,
F L = 680 F α ( eye , ω λ ) .
( I / F L ) filter + detector = s p 0 T λ σ λ ω λ ( cal ) d λ 680 0 V λ ω λ ( cal ) d λ = s p α ( det + fil , cal ) 680 α ( eye , cal ) .
I filter / I = α ( det + fil , cal ) / α ( det , cal ) .
R / R ( cal ) = α ( det , ω λ ) / α ( det , cal ) .
R λ = R ( cal ) / α ( det , cal ) ,
( I e / F ν ) λ = s p σ λ h c / e λ 1241 s p σ λ / λ ,
I e F ν = s p h c 0 σ λ ω λ d λ e 0 λ ω λ d λ = s p h c α ( det , ω λ ) e α ( λ , ω λ ) ,
α ( λ , ω λ ) = 0 λ ω λ d λ / 0 ω λ d λ .
α ( λ / 1200 , ω λ ) = 300 1200 ( λ / 1200 ) ω λ d λ / 300 1200 ω λ d λ
I e / F ν = h c R / 1200 e α ( λ / 1200 , ω λ ) 1.036 R / α ( λ / 1200 , ω λ )
F ν / F = 0 λ ω λ d λ / h c 0 ω λ d λ 5.035 × 10 15 α ( λ , ω λ )
6.040 × 10 8 α ( λ / 1200 , ω λ ) .

Metrics