Abstract

Diagnostic optical communication experiments were performed comparing noncoherent and coherent detection techniques. Three different receiver–transmitter configurations with variable apertures were used during the experiments that were performed over a 1-km real atmospheric path. In every case, it was found that the coherent system fading, due to atmospheric turbulence, was considerably greater than the noncoherent system fading. This result shows the greater sensitivity of the coherent system to the time-varying wavefront breakup produced by atmospheric turbulence. A coherent homodyne experiment at 10.6 μ over a 2-km round-trip path was also performed. Its results indicated that a coherent system at 10.6 μ is less susceptible to atmospheric turbulence than a coherent system at 6328 Å.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Lucy, K. Lang, C. J. Peters, K. Duval, Appl. Opt. 6, 1333 (1967).
    [CrossRef] [PubMed]
  2. D. L. Fried, IEEE J. Quant. Electron. QE-3, 213 (1967).
    [CrossRef]
  3. D. L. Fried, Proc. IEEE 55, 57 (1967).
    [CrossRef]
  4. S. Gardner, “Some Effects of Atmospheric Turbulence on Optical Heterodyne Communications,” 1967 IEEE Convention Record, Pt. 6, pp. 337–342.
  5. I. Goldstein, P. A. Miles, A. Chabot, Proc. IEEE 52, 1172 (1965).
    [CrossRef]
  6. R. D. Rosner, Proc. IEEE 56, 126 (1968).
    [CrossRef]
  7. R. F. Lucy, NEREM Rec. 6, 172 (1964).

1968

R. D. Rosner, Proc. IEEE 56, 126 (1968).
[CrossRef]

1967

D. L. Fried, IEEE J. Quant. Electron. QE-3, 213 (1967).
[CrossRef]

D. L. Fried, Proc. IEEE 55, 57 (1967).
[CrossRef]

R. F. Lucy, K. Lang, C. J. Peters, K. Duval, Appl. Opt. 6, 1333 (1967).
[CrossRef] [PubMed]

1965

I. Goldstein, P. A. Miles, A. Chabot, Proc. IEEE 52, 1172 (1965).
[CrossRef]

1964

R. F. Lucy, NEREM Rec. 6, 172 (1964).

Chabot, A.

I. Goldstein, P. A. Miles, A. Chabot, Proc. IEEE 52, 1172 (1965).
[CrossRef]

Duval, K.

Fried, D. L.

D. L. Fried, IEEE J. Quant. Electron. QE-3, 213 (1967).
[CrossRef]

D. L. Fried, Proc. IEEE 55, 57 (1967).
[CrossRef]

Gardner, S.

S. Gardner, “Some Effects of Atmospheric Turbulence on Optical Heterodyne Communications,” 1967 IEEE Convention Record, Pt. 6, pp. 337–342.

Goldstein, I.

I. Goldstein, P. A. Miles, A. Chabot, Proc. IEEE 52, 1172 (1965).
[CrossRef]

Lang, K.

Lucy, R. F.

Miles, P. A.

I. Goldstein, P. A. Miles, A. Chabot, Proc. IEEE 52, 1172 (1965).
[CrossRef]

Peters, C. J.

Rosner, R. D.

R. D. Rosner, Proc. IEEE 56, 126 (1968).
[CrossRef]

1967 IEEE Convention Record

S. Gardner, “Some Effects of Atmospheric Turbulence on Optical Heterodyne Communications,” 1967 IEEE Convention Record, Pt. 6, pp. 337–342.

Appl. Opt.

IEEE J. Quant. Electron.

D. L. Fried, IEEE J. Quant. Electron. QE-3, 213 (1967).
[CrossRef]

NEREM Rec.

R. F. Lucy, NEREM Rec. 6, 172 (1964).

Proc. IEEE

D. L. Fried, Proc. IEEE 55, 57 (1967).
[CrossRef]

I. Goldstein, P. A. Miles, A. Chabot, Proc. IEEE 52, 1172 (1965).
[CrossRef]

R. D. Rosner, Proc. IEEE 56, 126 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Optical superheterodyne receiver for visible wavelengths.

Fig. 2
Fig. 2

Signal fading experiments [(A), (B), (C)] to compare coherent and noncoherent detection.

Fig. 3
Fig. 3

Converging beam.

Fig. 4
Fig. 4

Converging beam—transmitter aperturing.

Fig. 5
Fig. 5

Probability density function, converging beam—transmitter aperturing.

Fig. 6
Fig. 6

Fading modulation—parallel beam.

Fig. 7
Fig. 7

Cumulative probability parallel beam—receiver aperturing.

Fig. 8
Fig. 8

Comparison of norncohelrent and coherent signal detection.

Fig. 9
Fig. 9

Probability density function for heterodyne signals.

Fig. 10
Fig. 10

Cumulative probability diverging beam—receiver aperturing.

Fig. 11
Fig. 11

Optical layout homodyne experiment at 10.6 μm.

Fig. 12
Fig. 12

Homodyne detected doppler signals at 10.6 μm.

Fig. 13
Fig. 13

Homodyne detected doppler signals compared to detector noise.

Tables (1)

Tables Icon

Table I Propagation Experiment at 10.6 μm

Metrics