Abstract

A method of stabilizing holographic or interferometric fringes using frequency compensation is described. An analysis is given which shows that fringe stabilization by frequency modulated feedback has an advantage over phase compensation feedback for certain interferometric configurations. Experimental results obtained using FM feedback are presented.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Neumann, H. W. Rose, Appl. Opt. 6, 1097 (1967).
    [CrossRef] [PubMed]
  2. E. A. Ballik, Phys. Letters 4, 173 (1963).
    [CrossRef]
  3. I. P. Kaminow, Appl. Opt. 3, 507 (1964).
    [CrossRef]
  4. A. D. White, IEEE Trans. QE-1, 349 (1965).
  5. E. F. Erickson, R. M. Brown, J. Opt. Soc. Am. 57, 367 (1967).
    [CrossRef]
  6. J. W. Foreman, Appl. Opt. 6, 821 (1967).
    [CrossRef] [PubMed]

1967 (3)

1965 (1)

A. D. White, IEEE Trans. QE-1, 349 (1965).

1964 (1)

1963 (1)

E. A. Ballik, Phys. Letters 4, 173 (1963).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Fringe stabilization system using frequency modulation feedback.

Fig. 2
Fig. 2

Fringe shift (upper trace) observed during laser warmup with FM feedback (first half of trace) and without FM feedback (second half of trace). Time scale is 18 sec/div.

Fig. 3
Fig. 3

Fringe shift (upper traces) observed with phase perturbation in one arm of interferometer. Time scale is 0.1 sec/div., (a) without FM feedback, and (b) with FM feedback. Bottom trace is the monitored output beam intensity of the laser.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

δ ϕ = ( 2 π Δ L / c ) δ f ,
δ f = - ( c / L ) ( δ L / λ 0 ) ,
δ ϕ las = - 2 π ( Δ L 2 L ) ( δ L λ 0 / 2 ) .
δ ϕ int = 2 π [ δ ( Δ L ) / λ 0 ] .
δ ϕ = 2 π [ δ ( Δ L ) λ 0 - Δ L 2 L δ L λ 0 / 2 ] .
θ = 2 π ( Δ L 2 L ) ( δ L λ 0 / 2 ) = ( 2 π / λ 0 ) ( Δ L / 2 L ) K cry V out ,
( Δ L / 2 L ) C 2 + θ = ( Δ L / 2 L ) C 1 cos ( β + θ ) ,
C 2 + θ = C 1 cos ( β + θ ) .

Metrics