Abstract

A mathematical model of the narcissus effect in infrared lenses with cooled detectors is discussed. The proposed model enables optical designers to take the narcissus performance of infrared lenses into consideration in the thin lens predesign stage. Third order thin lens aberration theory is the basis for the newly proposed narcissus analysis. Two narcissus metrics are defined in terms of structural parameters of the infrared lens to be designed. The metrics provide an indirect way of controlling narcissus performance in thin lens predesign. A long wave infrared lens is discussed from a narcissus perspective within the proposed model as an example. It is shown that the proposed narcissus model is a very effective way of controlling narcissus performance, starting from the early stages of lens design.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Calculation and evaluation of narcissus for diffractive surfaces in infrared systems

Tao Liu, Qingfeng Cui, Changxi Xue, and Liangliang Yang
Appl. Opt. 50(16) 2484-2492 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Data Availability

No data were generated or analyzed in the presented research.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (43)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription