Abstract

We devise an inline digital holographic imaging system equipped with a lightweight deep learning network, termed CompNet, and develop the transfer learning for classification and analysis. It has a compression block consisting of a concatenated rectified linear unit (CReLU) activation to reduce the channels, and a class-balanced cross-entropy loss for training. The method is particularly suitable for small and imbalanced datasets, and we apply it to the detection and classification of microplastics. Our results show good improvements both in feature extraction, and generalization and classification accuracy, effectively overcoming the problem of overfitting. This method could be attractive for future in situ microplastic particle detection and classification applications.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Deep learning-based cell identification and disease diagnosis using spatio-temporal cellular dynamics in compact digital holographic microscopy

Timothy O’Connor, Arun Anand, Biree Andemariam, and Bahram Javidi
Biomed. Opt. Express 11(8) 4491-4508 (2020)

Convolutional neural network applied for nanoparticle classification using coherent scatterometry data

D. Kolenov, D. Davidse, J. Le Cam, and S. F. Pereira
Appl. Opt. 59(27) 8426-8433 (2020)

Focus prediction in digital holographic microscopy using deep convolutional neural networks

Tomi Pitkäaho, Aki Manninen, and Thomas J. Naughton
Appl. Opt. 58(5) A202-A208 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription