Abstract

Spatial light modulators (SLMs) are key research tools in several contemporary applied optics research domains. In this paper, we present the argument that an open platform for interacting with SLMs would dramatically increase their accessibility to researchers. We introduce HoloBlade, an open-hardware implementation of an SLM driver-stack, and provide a detailed exposition of HoloBlade’s architecture, key components, and detailed design. An optical verification rig is constructed to demonstrate that HoloBlade can provide Fourier imaging capability in a 4f system. Finally, we discuss HoloBlade’s future development roadmap and the opportunities that it presents as a research tool for applied optics.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Holographic display with tilted spatial light modulator

Tomasz Kozacki
Appl. Opt. 50(20) 3579-3588 (2011)

Simultaneous phase-shifting interferometer with a monitored spatial light modulator flexible reference mirror

Qun Hao, Yan Ning, Yao Hu, Yu Zhang, Xin Tao, and Xu Chang
Appl. Opt. 60(6) 1550-1557 (2021)

Dual-view holographic three-dimensional display using a single spatial light modulator and a directional light-guide plate composed of pixelated gratings

Yanfeng Su, Zhijian Cai, Lingyan Shi, Feng Zhou, and Jianhong Wu
Appl. Opt. 58(25) 6912-6919 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36, 1–16 (2017).
    [Crossref]
  2. W. A. Crossland, T. D. Wilkinson, I. G. Manolis, M. M. Redmond, and A. B. Davey, “Telecommunications applications of LCOS devices,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 375, 1–13 (2002).
    [Crossref]
  3. R. Davies and M. Kasper, “Adaptive optics for astronomy,” Annu. Rev. Astron. Astrophys. 50, 305–351 (2012).
    [Crossref]
  4. M. Hasler, T. Haist, and W. Osten, “SLM-based microscopy,” Proc. SPIE 8430, 84300V (2012).
    [Crossref]
  5. P. Ambs, “Optical computing: a 60-year adventure,” Adv. in Opt. Technolog. 2010, 372652 (2010).
    [Crossref]
  6. D. Huang, H. Timmers, A. Roberts, N. Shivaram, and A. S. Sandhu, “A low-cost spatial light modulator for use in undergraduate and graduate optics labs,” Am. J. Phys. 80, 211–215 (2012).
    [Crossref]
  7. W. A. Crossland, T. D. Wilkinson, T. M. Coker, T. C. B. Yu, and M. Stanley, “The fast bitplane SLM: a new ferroelectric liquid crystal on silicon spatial light modulator designed for high yield and low cost manufacturability,” OSA TOPS Spatial Light Modulators 14, 102–106 (1997).
  8. C. Wang, Y.-C. Hsu, and S.-H. Chan, “SLM-based educational kit for wave optics,” Proc. SPIE 9793, 979315 (2015).
    [Crossref]
  9. T. A. A. Kamatsu, R. Y. H. Irayama, H. Irotaka, N. Akayama, T. A. K. Akue, T. O. S. Himobaba, and T. O. I. To, “Special-purpose computer HORN-8 for phase-type electro-holography,” Opt. Express 26, 26722–26733 (2018).
    [Crossref]
  10. F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, “Compression of digital holographic data: an overview,” Proc. SPIE 9599, 95990I (2015).
    [Crossref]
  11. E. Van Der Bij, J. Serrano, T. Wlostowski, M. Cattin, E. Gousiou, P. Alvarez Sanchez, A. Boccardi, N. Voumard, and G. Penacoba, “Open hardware for CERN’s accelerator control systems,” J. Instrum. 7, C01032 (2012).
    [Crossref]
  12. A. M. Chagas, “Haves and have nots must find a better way: the case for open scientific hardware,” PLoS Biol. 16, e3000014 (2018).
    [Crossref]
  13. B. Dunstan, “USB 3.0 architecture overview,” Tech. rep. (Technical Working Group, 2009).
  14. A. Lohse and J. M. Silva, “Advantages of active optical cables for industrial applications,” Photon. Views 17, 50–53 (2020).
    [Crossref]
  15. Future Technology Devices International Limited, “FT600Q-FT601Q IC Datasheet (USB 3.0 to FIFO bridge),” Tech. rep. (2017).
  16. S. Kesturt, J. D. Davis, and O. Williams, “BLAS comparison on FPGA, CPU and GPU,” in Proceedings–IEEE Annual Symposium on VLSI, ISVLSI (2010), pp. 288–293.
  17. K. Benkrid, D. Crookes, J. Smith, and A. Benkrid, “High level programming for FPGA based image and video processing using hardware skeletons,” in Proceedings–9th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM) (2001), pp. 219–226.
  18. I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 26, 203–215 (2007).
    [Crossref]
  19. Y. Wang, D. Dong, P. J. Christopher, A. Kadis, R. Mouthaan, F. Yang, and T. D. Wilkinson, “Hardware implementations of computer-generated holography: a review,” Opt. Eng. 59, 102413 (2020).
    [Crossref]
  20. A. Drumea and M. Pantazica, “Aspects of using low layer count PCBs for embedded systems with FPGA devices in BGA packages,” in IEEE 22nd International Symposium for Design and Technology in Electronic Packaging (SIITME) (2016), pp. 74–77.
  21. A. J. Cable, E. Buckley, P. Mash, N. A. Lawrence, T. D. Wilkinson, and W. A. Crossland, “53.1: real-time binary hologram generation for high-quality video projection applications,” in SID Symposium Digest of Technical Papers (2004), Vol. 35, pp. 1431.
  22. T. D. Wilkinson, W. A. Crossland, T. Coker, A. B. Davey, and T. C. Yu, “Ferroelectric liquid crystal on silicon spatial light modulator designed for high yield and low cost fabrication: the fast bitplane SLM,” Ferroelectrics 213, 219–223 (1998).
    [Crossref]
  23. Y. Li, B. Nelson, and M. Wirthlin, “Synchronization techniques for crossing multiple clock domains in FPGA-based TMR circuits,” IEEE Trans. Nucl. Sci. 57, 3506–3514 (2010).
    [Crossref]
  24. K. Jaic and M. C. Smith, “Enhancing hardware design flows with MyHDL,” in FPGA 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (2015), pp. 28–31.
  25. J. Goeders and S. J. Wilton, “Effective FPGA debug for high-level synthesis generated circuits,” in Conference Digest–24th International Conference on Field Programmable Logic and Applications (FPL) (2014).
  26. C. Liu, J. Wang, A. Zhang, and H. Ding, “Research on the fault diagnosis technology of intermittent connection failure belonging to FPGA solder-joints in BGA package,” Optik 125, 737–740 (2014).
    [Crossref]
  27. Future Technology Devices International Limited, “Application note 386: FT600 maximize performance,” Tech. rep. (2015).
  28. J. W. Goodman, Introduction to Fourier optics, 3rd ed. (Roberts & Company, 2005).
  29. Z. He, X. Sui, G. Jin, and L. Cao, “Progress in virtual reality and augmented reality based on holographic display,” Appl. Opt. 58, A74–A81 (2019).
    [Crossref]
  30. X. Xu, Y. Pan, P. P. M. Y. Lwin, and X. Liang, “3D holographic display and its data transmission requirement,” in International Conference on Information Photonics and Optical Communications (IPOC) (2011), pp. 3–6.

2020 (2)

A. Lohse and J. M. Silva, “Advantages of active optical cables for industrial applications,” Photon. Views 17, 50–53 (2020).
[Crossref]

Y. Wang, D. Dong, P. J. Christopher, A. Kadis, R. Mouthaan, F. Yang, and T. D. Wilkinson, “Hardware implementations of computer-generated holography: a review,” Opt. Eng. 59, 102413 (2020).
[Crossref]

2019 (1)

2018 (2)

2017 (1)

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36, 1–16 (2017).
[Crossref]

2015 (2)

F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, “Compression of digital holographic data: an overview,” Proc. SPIE 9599, 95990I (2015).
[Crossref]

C. Wang, Y.-C. Hsu, and S.-H. Chan, “SLM-based educational kit for wave optics,” Proc. SPIE 9793, 979315 (2015).
[Crossref]

2014 (1)

C. Liu, J. Wang, A. Zhang, and H. Ding, “Research on the fault diagnosis technology of intermittent connection failure belonging to FPGA solder-joints in BGA package,” Optik 125, 737–740 (2014).
[Crossref]

2012 (4)

E. Van Der Bij, J. Serrano, T. Wlostowski, M. Cattin, E. Gousiou, P. Alvarez Sanchez, A. Boccardi, N. Voumard, and G. Penacoba, “Open hardware for CERN’s accelerator control systems,” J. Instrum. 7, C01032 (2012).
[Crossref]

D. Huang, H. Timmers, A. Roberts, N. Shivaram, and A. S. Sandhu, “A low-cost spatial light modulator for use in undergraduate and graduate optics labs,” Am. J. Phys. 80, 211–215 (2012).
[Crossref]

R. Davies and M. Kasper, “Adaptive optics for astronomy,” Annu. Rev. Astron. Astrophys. 50, 305–351 (2012).
[Crossref]

M. Hasler, T. Haist, and W. Osten, “SLM-based microscopy,” Proc. SPIE 8430, 84300V (2012).
[Crossref]

2010 (2)

P. Ambs, “Optical computing: a 60-year adventure,” Adv. in Opt. Technolog. 2010, 372652 (2010).
[Crossref]

Y. Li, B. Nelson, and M. Wirthlin, “Synchronization techniques for crossing multiple clock domains in FPGA-based TMR circuits,” IEEE Trans. Nucl. Sci. 57, 3506–3514 (2010).
[Crossref]

2007 (1)

I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 26, 203–215 (2007).
[Crossref]

2002 (1)

W. A. Crossland, T. D. Wilkinson, I. G. Manolis, M. M. Redmond, and A. B. Davey, “Telecommunications applications of LCOS devices,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 375, 1–13 (2002).
[Crossref]

1998 (1)

T. D. Wilkinson, W. A. Crossland, T. Coker, A. B. Davey, and T. C. Yu, “Ferroelectric liquid crystal on silicon spatial light modulator designed for high yield and low cost fabrication: the fast bitplane SLM,” Ferroelectrics 213, 219–223 (1998).
[Crossref]

1997 (1)

W. A. Crossland, T. D. Wilkinson, T. M. Coker, T. C. B. Yu, and M. Stanley, “The fast bitplane SLM: a new ferroelectric liquid crystal on silicon spatial light modulator designed for high yield and low cost manufacturability,” OSA TOPS Spatial Light Modulators 14, 102–106 (1997).

Akayama, N.

Akue, T. A. K.

Alvarez Sanchez, P.

E. Van Der Bij, J. Serrano, T. Wlostowski, M. Cattin, E. Gousiou, P. Alvarez Sanchez, A. Boccardi, N. Voumard, and G. Penacoba, “Open hardware for CERN’s accelerator control systems,” J. Instrum. 7, C01032 (2012).
[Crossref]

Ambs, P.

P. Ambs, “Optical computing: a 60-year adventure,” Adv. in Opt. Technolog. 2010, 372652 (2010).
[Crossref]

Benkrid, A.

K. Benkrid, D. Crookes, J. Smith, and A. Benkrid, “High level programming for FPGA based image and video processing using hardware skeletons,” in Proceedings–9th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM) (2001), pp. 219–226.

Benkrid, K.

K. Benkrid, D. Crookes, J. Smith, and A. Benkrid, “High level programming for FPGA based image and video processing using hardware skeletons,” in Proceedings–9th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM) (2001), pp. 219–226.

Boccardi, A.

E. Van Der Bij, J. Serrano, T. Wlostowski, M. Cattin, E. Gousiou, P. Alvarez Sanchez, A. Boccardi, N. Voumard, and G. Penacoba, “Open hardware for CERN’s accelerator control systems,” J. Instrum. 7, C01032 (2012).
[Crossref]

Buckley, E.

A. J. Cable, E. Buckley, P. Mash, N. A. Lawrence, T. D. Wilkinson, and W. A. Crossland, “53.1: real-time binary hologram generation for high-quality video projection applications,” in SID Symposium Digest of Technical Papers (2004), Vol. 35, pp. 1431.

Cable, A. J.

A. J. Cable, E. Buckley, P. Mash, N. A. Lawrence, T. D. Wilkinson, and W. A. Crossland, “53.1: real-time binary hologram generation for high-quality video projection applications,” in SID Symposium Digest of Technical Papers (2004), Vol. 35, pp. 1431.

Cao, L.

Cattin, M.

E. Van Der Bij, J. Serrano, T. Wlostowski, M. Cattin, E. Gousiou, P. Alvarez Sanchez, A. Boccardi, N. Voumard, and G. Penacoba, “Open hardware for CERN’s accelerator control systems,” J. Instrum. 7, C01032 (2012).
[Crossref]

Chagas, A. M.

A. M. Chagas, “Haves and have nots must find a better way: the case for open scientific hardware,” PLoS Biol. 16, e3000014 (2018).
[Crossref]

Chan, S.-H.

C. Wang, Y.-C. Hsu, and S.-H. Chan, “SLM-based educational kit for wave optics,” Proc. SPIE 9793, 979315 (2015).
[Crossref]

Christopher, P. J.

Y. Wang, D. Dong, P. J. Christopher, A. Kadis, R. Mouthaan, F. Yang, and T. D. Wilkinson, “Hardware implementations of computer-generated holography: a review,” Opt. Eng. 59, 102413 (2020).
[Crossref]

Coker, T.

T. D. Wilkinson, W. A. Crossland, T. Coker, A. B. Davey, and T. C. Yu, “Ferroelectric liquid crystal on silicon spatial light modulator designed for high yield and low cost fabrication: the fast bitplane SLM,” Ferroelectrics 213, 219–223 (1998).
[Crossref]

Coker, T. M.

W. A. Crossland, T. D. Wilkinson, T. M. Coker, T. C. B. Yu, and M. Stanley, “The fast bitplane SLM: a new ferroelectric liquid crystal on silicon spatial light modulator designed for high yield and low cost manufacturability,” OSA TOPS Spatial Light Modulators 14, 102–106 (1997).

Crookes, D.

K. Benkrid, D. Crookes, J. Smith, and A. Benkrid, “High level programming for FPGA based image and video processing using hardware skeletons,” in Proceedings–9th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM) (2001), pp. 219–226.

Crossland, W. A.

W. A. Crossland, T. D. Wilkinson, I. G. Manolis, M. M. Redmond, and A. B. Davey, “Telecommunications applications of LCOS devices,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 375, 1–13 (2002).
[Crossref]

T. D. Wilkinson, W. A. Crossland, T. Coker, A. B. Davey, and T. C. Yu, “Ferroelectric liquid crystal on silicon spatial light modulator designed for high yield and low cost fabrication: the fast bitplane SLM,” Ferroelectrics 213, 219–223 (1998).
[Crossref]

W. A. Crossland, T. D. Wilkinson, T. M. Coker, T. C. B. Yu, and M. Stanley, “The fast bitplane SLM: a new ferroelectric liquid crystal on silicon spatial light modulator designed for high yield and low cost manufacturability,” OSA TOPS Spatial Light Modulators 14, 102–106 (1997).

A. J. Cable, E. Buckley, P. Mash, N. A. Lawrence, T. D. Wilkinson, and W. A. Crossland, “53.1: real-time binary hologram generation for high-quality video projection applications,” in SID Symposium Digest of Technical Papers (2004), Vol. 35, pp. 1431.

Davey, A. B.

W. A. Crossland, T. D. Wilkinson, I. G. Manolis, M. M. Redmond, and A. B. Davey, “Telecommunications applications of LCOS devices,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 375, 1–13 (2002).
[Crossref]

T. D. Wilkinson, W. A. Crossland, T. Coker, A. B. Davey, and T. C. Yu, “Ferroelectric liquid crystal on silicon spatial light modulator designed for high yield and low cost fabrication: the fast bitplane SLM,” Ferroelectrics 213, 219–223 (1998).
[Crossref]

Davies, R.

R. Davies and M. Kasper, “Adaptive optics for astronomy,” Annu. Rev. Astron. Astrophys. 50, 305–351 (2012).
[Crossref]

Davis, J. D.

S. Kesturt, J. D. Davis, and O. Williams, “BLAS comparison on FPGA, CPU and GPU,” in Proceedings–IEEE Annual Symposium on VLSI, ISVLSI (2010), pp. 288–293.

Ding, H.

C. Liu, J. Wang, A. Zhang, and H. Ding, “Research on the fault diagnosis technology of intermittent connection failure belonging to FPGA solder-joints in BGA package,” Optik 125, 737–740 (2014).
[Crossref]

Dong, D.

Y. Wang, D. Dong, P. J. Christopher, A. Kadis, R. Mouthaan, F. Yang, and T. D. Wilkinson, “Hardware implementations of computer-generated holography: a review,” Opt. Eng. 59, 102413 (2020).
[Crossref]

Drumea, A.

A. Drumea and M. Pantazica, “Aspects of using low layer count PCBs for embedded systems with FPGA devices in BGA packages,” in IEEE 22nd International Symposium for Design and Technology in Electronic Packaging (SIITME) (2016), pp. 74–77.

Dufaux, F.

F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, “Compression of digital holographic data: an overview,” Proc. SPIE 9599, 95990I (2015).
[Crossref]

Dunstan, B.

B. Dunstan, “USB 3.0 architecture overview,” Tech. rep. (Technical Working Group, 2009).

Georgiou, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36, 1–16 (2017).
[Crossref]

Goeders, J.

J. Goeders and S. J. Wilton, “Effective FPGA debug for high-level synthesis generated circuits,” in Conference Digest–24th International Conference on Field Programmable Logic and Applications (FPL) (2014).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier optics, 3rd ed. (Roberts & Company, 2005).

Gousiou, E.

E. Van Der Bij, J. Serrano, T. Wlostowski, M. Cattin, E. Gousiou, P. Alvarez Sanchez, A. Boccardi, N. Voumard, and G. Penacoba, “Open hardware for CERN’s accelerator control systems,” J. Instrum. 7, C01032 (2012).
[Crossref]

Haist, T.

M. Hasler, T. Haist, and W. Osten, “SLM-based microscopy,” Proc. SPIE 8430, 84300V (2012).
[Crossref]

Hasler, M.

M. Hasler, T. Haist, and W. Osten, “SLM-based microscopy,” Proc. SPIE 8430, 84300V (2012).
[Crossref]

He, Z.

Himobaba, T. O. S.

Hsu, Y.-C.

C. Wang, Y.-C. Hsu, and S.-H. Chan, “SLM-based educational kit for wave optics,” Proc. SPIE 9793, 979315 (2015).
[Crossref]

Huang, D.

D. Huang, H. Timmers, A. Roberts, N. Shivaram, and A. S. Sandhu, “A low-cost spatial light modulator for use in undergraduate and graduate optics labs,” Am. J. Phys. 80, 211–215 (2012).
[Crossref]

Irayama, R. Y. H.

Irotaka, H.

Jaic, K.

K. Jaic and M. C. Smith, “Enhancing hardware design flows with MyHDL,” in FPGA 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (2015), pp. 28–31.

Jin, G.

Kadis, A.

Y. Wang, D. Dong, P. J. Christopher, A. Kadis, R. Mouthaan, F. Yang, and T. D. Wilkinson, “Hardware implementations of computer-generated holography: a review,” Opt. Eng. 59, 102413 (2020).
[Crossref]

Kamatsu, T. A. A.

Kasper, M.

R. Davies and M. Kasper, “Adaptive optics for astronomy,” Annu. Rev. Astron. Astrophys. 50, 305–351 (2012).
[Crossref]

Kesturt, S.

S. Kesturt, J. D. Davis, and O. Williams, “BLAS comparison on FPGA, CPU and GPU,” in Proceedings–IEEE Annual Symposium on VLSI, ISVLSI (2010), pp. 288–293.

Kollin, J. S.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36, 1–16 (2017).
[Crossref]

Kuon, I.

I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 26, 203–215 (2007).
[Crossref]

Lawrence, N. A.

A. J. Cable, E. Buckley, P. Mash, N. A. Lawrence, T. D. Wilkinson, and W. A. Crossland, “53.1: real-time binary hologram generation for high-quality video projection applications,” in SID Symposium Digest of Technical Papers (2004), Vol. 35, pp. 1431.

Li, Y.

Y. Li, B. Nelson, and M. Wirthlin, “Synchronization techniques for crossing multiple clock domains in FPGA-based TMR circuits,” IEEE Trans. Nucl. Sci. 57, 3506–3514 (2010).
[Crossref]

Liang, X.

X. Xu, Y. Pan, P. P. M. Y. Lwin, and X. Liang, “3D holographic display and its data transmission requirement,” in International Conference on Information Photonics and Optical Communications (IPOC) (2011), pp. 3–6.

Liu, C.

C. Liu, J. Wang, A. Zhang, and H. Ding, “Research on the fault diagnosis technology of intermittent connection failure belonging to FPGA solder-joints in BGA package,” Optik 125, 737–740 (2014).
[Crossref]

Lohse, A.

A. Lohse and J. M. Silva, “Advantages of active optical cables for industrial applications,” Photon. Views 17, 50–53 (2020).
[Crossref]

Lwin, P. P. M. Y.

X. Xu, Y. Pan, P. P. M. Y. Lwin, and X. Liang, “3D holographic display and its data transmission requirement,” in International Conference on Information Photonics and Optical Communications (IPOC) (2011), pp. 3–6.

Maimone, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36, 1–16 (2017).
[Crossref]

Manolis, I. G.

W. A. Crossland, T. D. Wilkinson, I. G. Manolis, M. M. Redmond, and A. B. Davey, “Telecommunications applications of LCOS devices,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 375, 1–13 (2002).
[Crossref]

Mash, P.

A. J. Cable, E. Buckley, P. Mash, N. A. Lawrence, T. D. Wilkinson, and W. A. Crossland, “53.1: real-time binary hologram generation for high-quality video projection applications,” in SID Symposium Digest of Technical Papers (2004), Vol. 35, pp. 1431.

Mouthaan, R.

Y. Wang, D. Dong, P. J. Christopher, A. Kadis, R. Mouthaan, F. Yang, and T. D. Wilkinson, “Hardware implementations of computer-generated holography: a review,” Opt. Eng. 59, 102413 (2020).
[Crossref]

Nelson, B.

Y. Li, B. Nelson, and M. Wirthlin, “Synchronization techniques for crossing multiple clock domains in FPGA-based TMR circuits,” IEEE Trans. Nucl. Sci. 57, 3506–3514 (2010).
[Crossref]

Osten, W.

M. Hasler, T. Haist, and W. Osten, “SLM-based microscopy,” Proc. SPIE 8430, 84300V (2012).
[Crossref]

Pan, Y.

X. Xu, Y. Pan, P. P. M. Y. Lwin, and X. Liang, “3D holographic display and its data transmission requirement,” in International Conference on Information Photonics and Optical Communications (IPOC) (2011), pp. 3–6.

Pantazica, M.

A. Drumea and M. Pantazica, “Aspects of using low layer count PCBs for embedded systems with FPGA devices in BGA packages,” in IEEE 22nd International Symposium for Design and Technology in Electronic Packaging (SIITME) (2016), pp. 74–77.

Penacoba, G.

E. Van Der Bij, J. Serrano, T. Wlostowski, M. Cattin, E. Gousiou, P. Alvarez Sanchez, A. Boccardi, N. Voumard, and G. Penacoba, “Open hardware for CERN’s accelerator control systems,” J. Instrum. 7, C01032 (2012).
[Crossref]

Pesquet-Popescu, B.

F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, “Compression of digital holographic data: an overview,” Proc. SPIE 9599, 95990I (2015).
[Crossref]

Redmond, M. M.

W. A. Crossland, T. D. Wilkinson, I. G. Manolis, M. M. Redmond, and A. B. Davey, “Telecommunications applications of LCOS devices,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 375, 1–13 (2002).
[Crossref]

Roberts, A.

D. Huang, H. Timmers, A. Roberts, N. Shivaram, and A. S. Sandhu, “A low-cost spatial light modulator for use in undergraduate and graduate optics labs,” Am. J. Phys. 80, 211–215 (2012).
[Crossref]

Rose, J.

I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 26, 203–215 (2007).
[Crossref]

Sandhu, A. S.

D. Huang, H. Timmers, A. Roberts, N. Shivaram, and A. S. Sandhu, “A low-cost spatial light modulator for use in undergraduate and graduate optics labs,” Am. J. Phys. 80, 211–215 (2012).
[Crossref]

Schelkens, P.

F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, “Compression of digital holographic data: an overview,” Proc. SPIE 9599, 95990I (2015).
[Crossref]

Serrano, J.

E. Van Der Bij, J. Serrano, T. Wlostowski, M. Cattin, E. Gousiou, P. Alvarez Sanchez, A. Boccardi, N. Voumard, and G. Penacoba, “Open hardware for CERN’s accelerator control systems,” J. Instrum. 7, C01032 (2012).
[Crossref]

Shivaram, N.

D. Huang, H. Timmers, A. Roberts, N. Shivaram, and A. S. Sandhu, “A low-cost spatial light modulator for use in undergraduate and graduate optics labs,” Am. J. Phys. 80, 211–215 (2012).
[Crossref]

Silva, J. M.

A. Lohse and J. M. Silva, “Advantages of active optical cables for industrial applications,” Photon. Views 17, 50–53 (2020).
[Crossref]

Smith, J.

K. Benkrid, D. Crookes, J. Smith, and A. Benkrid, “High level programming for FPGA based image and video processing using hardware skeletons,” in Proceedings–9th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM) (2001), pp. 219–226.

Smith, M. C.

K. Jaic and M. C. Smith, “Enhancing hardware design flows with MyHDL,” in FPGA 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (2015), pp. 28–31.

Stanley, M.

W. A. Crossland, T. D. Wilkinson, T. M. Coker, T. C. B. Yu, and M. Stanley, “The fast bitplane SLM: a new ferroelectric liquid crystal on silicon spatial light modulator designed for high yield and low cost manufacturability,” OSA TOPS Spatial Light Modulators 14, 102–106 (1997).

Sui, X.

Timmers, H.

D. Huang, H. Timmers, A. Roberts, N. Shivaram, and A. S. Sandhu, “A low-cost spatial light modulator for use in undergraduate and graduate optics labs,” Am. J. Phys. 80, 211–215 (2012).
[Crossref]

To, T. O. I.

Van Der Bij, E.

E. Van Der Bij, J. Serrano, T. Wlostowski, M. Cattin, E. Gousiou, P. Alvarez Sanchez, A. Boccardi, N. Voumard, and G. Penacoba, “Open hardware for CERN’s accelerator control systems,” J. Instrum. 7, C01032 (2012).
[Crossref]

Voumard, N.

E. Van Der Bij, J. Serrano, T. Wlostowski, M. Cattin, E. Gousiou, P. Alvarez Sanchez, A. Boccardi, N. Voumard, and G. Penacoba, “Open hardware for CERN’s accelerator control systems,” J. Instrum. 7, C01032 (2012).
[Crossref]

Wang, C.

C. Wang, Y.-C. Hsu, and S.-H. Chan, “SLM-based educational kit for wave optics,” Proc. SPIE 9793, 979315 (2015).
[Crossref]

Wang, J.

C. Liu, J. Wang, A. Zhang, and H. Ding, “Research on the fault diagnosis technology of intermittent connection failure belonging to FPGA solder-joints in BGA package,” Optik 125, 737–740 (2014).
[Crossref]

Wang, Y.

Y. Wang, D. Dong, P. J. Christopher, A. Kadis, R. Mouthaan, F. Yang, and T. D. Wilkinson, “Hardware implementations of computer-generated holography: a review,” Opt. Eng. 59, 102413 (2020).
[Crossref]

Wilkinson, T. D.

Y. Wang, D. Dong, P. J. Christopher, A. Kadis, R. Mouthaan, F. Yang, and T. D. Wilkinson, “Hardware implementations of computer-generated holography: a review,” Opt. Eng. 59, 102413 (2020).
[Crossref]

W. A. Crossland, T. D. Wilkinson, I. G. Manolis, M. M. Redmond, and A. B. Davey, “Telecommunications applications of LCOS devices,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 375, 1–13 (2002).
[Crossref]

T. D. Wilkinson, W. A. Crossland, T. Coker, A. B. Davey, and T. C. Yu, “Ferroelectric liquid crystal on silicon spatial light modulator designed for high yield and low cost fabrication: the fast bitplane SLM,” Ferroelectrics 213, 219–223 (1998).
[Crossref]

W. A. Crossland, T. D. Wilkinson, T. M. Coker, T. C. B. Yu, and M. Stanley, “The fast bitplane SLM: a new ferroelectric liquid crystal on silicon spatial light modulator designed for high yield and low cost manufacturability,” OSA TOPS Spatial Light Modulators 14, 102–106 (1997).

A. J. Cable, E. Buckley, P. Mash, N. A. Lawrence, T. D. Wilkinson, and W. A. Crossland, “53.1: real-time binary hologram generation for high-quality video projection applications,” in SID Symposium Digest of Technical Papers (2004), Vol. 35, pp. 1431.

Williams, O.

S. Kesturt, J. D. Davis, and O. Williams, “BLAS comparison on FPGA, CPU and GPU,” in Proceedings–IEEE Annual Symposium on VLSI, ISVLSI (2010), pp. 288–293.

Wilton, S. J.

J. Goeders and S. J. Wilton, “Effective FPGA debug for high-level synthesis generated circuits,” in Conference Digest–24th International Conference on Field Programmable Logic and Applications (FPL) (2014).

Wirthlin, M.

Y. Li, B. Nelson, and M. Wirthlin, “Synchronization techniques for crossing multiple clock domains in FPGA-based TMR circuits,” IEEE Trans. Nucl. Sci. 57, 3506–3514 (2010).
[Crossref]

Wlostowski, T.

E. Van Der Bij, J. Serrano, T. Wlostowski, M. Cattin, E. Gousiou, P. Alvarez Sanchez, A. Boccardi, N. Voumard, and G. Penacoba, “Open hardware for CERN’s accelerator control systems,” J. Instrum. 7, C01032 (2012).
[Crossref]

Xing, Y.

F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, “Compression of digital holographic data: an overview,” Proc. SPIE 9599, 95990I (2015).
[Crossref]

Xu, X.

X. Xu, Y. Pan, P. P. M. Y. Lwin, and X. Liang, “3D holographic display and its data transmission requirement,” in International Conference on Information Photonics and Optical Communications (IPOC) (2011), pp. 3–6.

Yang, F.

Y. Wang, D. Dong, P. J. Christopher, A. Kadis, R. Mouthaan, F. Yang, and T. D. Wilkinson, “Hardware implementations of computer-generated holography: a review,” Opt. Eng. 59, 102413 (2020).
[Crossref]

Yu, T. C.

T. D. Wilkinson, W. A. Crossland, T. Coker, A. B. Davey, and T. C. Yu, “Ferroelectric liquid crystal on silicon spatial light modulator designed for high yield and low cost fabrication: the fast bitplane SLM,” Ferroelectrics 213, 219–223 (1998).
[Crossref]

Yu, T. C. B.

W. A. Crossland, T. D. Wilkinson, T. M. Coker, T. C. B. Yu, and M. Stanley, “The fast bitplane SLM: a new ferroelectric liquid crystal on silicon spatial light modulator designed for high yield and low cost manufacturability,” OSA TOPS Spatial Light Modulators 14, 102–106 (1997).

Zhang, A.

C. Liu, J. Wang, A. Zhang, and H. Ding, “Research on the fault diagnosis technology of intermittent connection failure belonging to FPGA solder-joints in BGA package,” Optik 125, 737–740 (2014).
[Crossref]

ACM Trans. Graph. (1)

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36, 1–16 (2017).
[Crossref]

Adv. in Opt. Technolog. (1)

P. Ambs, “Optical computing: a 60-year adventure,” Adv. in Opt. Technolog. 2010, 372652 (2010).
[Crossref]

Am. J. Phys. (1)

D. Huang, H. Timmers, A. Roberts, N. Shivaram, and A. S. Sandhu, “A low-cost spatial light modulator for use in undergraduate and graduate optics labs,” Am. J. Phys. 80, 211–215 (2012).
[Crossref]

Annu. Rev. Astron. Astrophys. (1)

R. Davies and M. Kasper, “Adaptive optics for astronomy,” Annu. Rev. Astron. Astrophys. 50, 305–351 (2012).
[Crossref]

Appl. Opt. (1)

Ferroelectrics (1)

T. D. Wilkinson, W. A. Crossland, T. Coker, A. B. Davey, and T. C. Yu, “Ferroelectric liquid crystal on silicon spatial light modulator designed for high yield and low cost fabrication: the fast bitplane SLM,” Ferroelectrics 213, 219–223 (1998).
[Crossref]

IEEE Trans. Computer-Aided Design Integr. Circuits Syst. (1)

I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 26, 203–215 (2007).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

Y. Li, B. Nelson, and M. Wirthlin, “Synchronization techniques for crossing multiple clock domains in FPGA-based TMR circuits,” IEEE Trans. Nucl. Sci. 57, 3506–3514 (2010).
[Crossref]

J. Instrum. (1)

E. Van Der Bij, J. Serrano, T. Wlostowski, M. Cattin, E. Gousiou, P. Alvarez Sanchez, A. Boccardi, N. Voumard, and G. Penacoba, “Open hardware for CERN’s accelerator control systems,” J. Instrum. 7, C01032 (2012).
[Crossref]

Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A (1)

W. A. Crossland, T. D. Wilkinson, I. G. Manolis, M. M. Redmond, and A. B. Davey, “Telecommunications applications of LCOS devices,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 375, 1–13 (2002).
[Crossref]

Opt. Eng. (1)

Y. Wang, D. Dong, P. J. Christopher, A. Kadis, R. Mouthaan, F. Yang, and T. D. Wilkinson, “Hardware implementations of computer-generated holography: a review,” Opt. Eng. 59, 102413 (2020).
[Crossref]

Opt. Express (1)

Optik (1)

C. Liu, J. Wang, A. Zhang, and H. Ding, “Research on the fault diagnosis technology of intermittent connection failure belonging to FPGA solder-joints in BGA package,” Optik 125, 737–740 (2014).
[Crossref]

OSA TOPS Spatial Light Modulators (1)

W. A. Crossland, T. D. Wilkinson, T. M. Coker, T. C. B. Yu, and M. Stanley, “The fast bitplane SLM: a new ferroelectric liquid crystal on silicon spatial light modulator designed for high yield and low cost manufacturability,” OSA TOPS Spatial Light Modulators 14, 102–106 (1997).

Photon. Views (1)

A. Lohse and J. M. Silva, “Advantages of active optical cables for industrial applications,” Photon. Views 17, 50–53 (2020).
[Crossref]

PLoS Biol. (1)

A. M. Chagas, “Haves and have nots must find a better way: the case for open scientific hardware,” PLoS Biol. 16, e3000014 (2018).
[Crossref]

Proc. SPIE (3)

F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, “Compression of digital holographic data: an overview,” Proc. SPIE 9599, 95990I (2015).
[Crossref]

C. Wang, Y.-C. Hsu, and S.-H. Chan, “SLM-based educational kit for wave optics,” Proc. SPIE 9793, 979315 (2015).
[Crossref]

M. Hasler, T. Haist, and W. Osten, “SLM-based microscopy,” Proc. SPIE 8430, 84300V (2012).
[Crossref]

Other (11)

B. Dunstan, “USB 3.0 architecture overview,” Tech. rep. (Technical Working Group, 2009).

Future Technology Devices International Limited, “FT600Q-FT601Q IC Datasheet (USB 3.0 to FIFO bridge),” Tech. rep. (2017).

S. Kesturt, J. D. Davis, and O. Williams, “BLAS comparison on FPGA, CPU and GPU,” in Proceedings–IEEE Annual Symposium on VLSI, ISVLSI (2010), pp. 288–293.

K. Benkrid, D. Crookes, J. Smith, and A. Benkrid, “High level programming for FPGA based image and video processing using hardware skeletons,” in Proceedings–9th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM) (2001), pp. 219–226.

Future Technology Devices International Limited, “Application note 386: FT600 maximize performance,” Tech. rep. (2015).

J. W. Goodman, Introduction to Fourier optics, 3rd ed. (Roberts & Company, 2005).

X. Xu, Y. Pan, P. P. M. Y. Lwin, and X. Liang, “3D holographic display and its data transmission requirement,” in International Conference on Information Photonics and Optical Communications (IPOC) (2011), pp. 3–6.

A. Drumea and M. Pantazica, “Aspects of using low layer count PCBs for embedded systems with FPGA devices in BGA packages,” in IEEE 22nd International Symposium for Design and Technology in Electronic Packaging (SIITME) (2016), pp. 74–77.

A. J. Cable, E. Buckley, P. Mash, N. A. Lawrence, T. D. Wilkinson, and W. A. Crossland, “53.1: real-time binary hologram generation for high-quality video projection applications,” in SID Symposium Digest of Technical Papers (2004), Vol. 35, pp. 1431.

K. Jaic and M. C. Smith, “Enhancing hardware design flows with MyHDL,” in FPGA 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (2015), pp. 28–31.

J. Goeders and S. J. Wilton, “Effective FPGA debug for high-level synthesis generated circuits,” in Conference Digest–24th International Conference on Field Programmable Logic and Applications (FPL) (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. HoloBlade, an open-hardware SLM driver-stack.
Fig. 2.
Fig. 2. HoloBlade driver-stack.
Fig. 3.
Fig. 3. Binary-phase FLC SLM used in HoloBlade implementation.
Fig. 4.
Fig. 4. Block diagram of the logical components in the synthesized FPGA design. The majority of the design is common across all target SLMs, with only the display data controller and configuration datapath (outlined in blue) bespoke to the specific SLM.
Fig. 5.
Fig. 5. Display data controller state machine logic.
Fig. 6.
Fig. 6. USB 3.0 interface controller state machine logic.
Fig. 7.
Fig. 7. HoloBlade bespoke electronics with circuitry shaded according to functionality.
Fig. 8.
Fig. 8. Design features of the bespoke HoloBlade electronics. (a) Bare PCB, (b) bespoke flexible-PCB ribbon cable, (c) matched-length data traces, and (d) board stack-up.
Fig. 9.
Fig. 9. GUI application screenshot.
Fig. 10.
Fig. 10. Optomechanical mounting.
Fig. 11.
Fig. 11. ${{4}}f$ optical system used to verify SLM functionality.
Fig. 12.
Fig. 12. Outputs from the HoloBlade driver-stack used in an experimental optical system. The expected replay fields are formed for three distinct test patterns. The left column shows the binary-phase masks loaded onto the SLM, with a polarizer film on top for contrast, and the right column shows the images acquired at the replay field plane imaged by the Basler USB 3.0 camera. (a) Horizontal grating test pattern, (b) horizontal grating replay field, (c) vertical grating test pattern, (d) vertical grating replay field, (e) checkerboard test pattern, and (f) checkerboard replay field.

Tables (1)

Tables Icon

Table 1. Relative Intensity [%] of Distinct Replay Field Regions for a Horizontal Grating

Metrics