Abstract

The observation and study of defects of single-crystal multicomponent optical material is necessary to determine the qualitative characteristics and optical properties of a material and to diagnose its manufacturing procedures. This paper utilizes the digital IR-holography to measure the geometrical parameters, shape, and location of defects as well as to characterize them. The paper illustrates the examples of physical, chemical, and optical inhomogeneities. Also, the paper presents the results of the study of dynamic processes in optical elements under the influence of laser radiation with high power density. The possibility of using the digital holographic technology to determine the dynamics of optical breakdown in the ${{\rm ZnGeP}_2}$ single crystal is illustrated, namely, to estimate the speed and time of breakdown development, which can be used to interpret the mechanisms of breakdown development.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Multimodal sound field imaging using digital holography [Invited]

Sudheesh K. Rajput, Osamu Matoba, Yuki Takase, Tomoyoshi Inoue, Kohei Itaya, Manoj Kumar, Xiangyu Quan, Peng Xia, and Yasuhiro Awatsuji
Appl. Opt. 60(10) B49-B58 (2021)

Holography of particles for diagnostics tasks [Invited]

Victor Dyomin, Alexander Gribenyukov, Alexandra Davydova, Michael Zinoviev, Alexey Olshukov, Sergei Podzyvalov, Igor Polovtsev, and Nikolay Yudin
Appl. Opt. 58(34) G300-G310 (2019)

Holographic tomography: techniques and biomedical applications [Invited]

Vinoth Balasubramani, Arkadiusz Kuś, Han-Yen Tu, Chau-Jern Cheng, Maria Baczewska, Wojciech Krauze, and Małgorzata Kujawińska
Appl. Opt. 60(10) B65-B80 (2021)

References

  • View by:
  • |
  • |
  • |

  1. M. N. Libenson, E. B. Yakovlev, and G. D. Shandybina, Interaction of Laser Radiation with Matter (Power Optics). Lecture Notes. Part 1. Absorption of Laser Radiation in a Substance. (Interaction of Laser Radiation with Matter (Power Optics). Notes of Lectures. Part I. Absorption of Laser Radiation in Matter), V. P. Veiko, ed. (ITMO, 2008).
  2. P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33, D36–D43 (2016).
    [Crossref]
  3. A. Hemming, J. Richards, A. A. Davidson, N. Carmody, S. Bennetts, N. Simakov, and J. Haub, “99 W mid-IR operation of a ZGP OPO at 25% duty cycle,” Opt. Express 21, 10062–10069 (2013).
    [Crossref]
  4. M. W. Haakestad, H. Fonnum, and E. Lippert, “Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2,” Opt. Express 22, 8556–8564 (2014).
    [Crossref]
  5. C. Qian, B. Yao, B. Zhao, G. Liu, X. Duan, Y. Ju, and Y. Wang, “High repetition rate 102 W middle infrared ZnGeP2 master oscillator power amplifier system with thermal lens compensation,” Opt. Lett. 44, 715–718 (2019).
    [Crossref]
  6. G. A. Verozubova and A. O. Okunev, “Growth of ZnGeP2 non-linear optical crystals and their study by x-ray topography,” Adv. Sci. Lett. 19, 967–971 (2013).
    [Crossref]
  7. Z. Lei, A. O. Okunev, C. Zhu, G. A. Verozubova, and C. Yang, “Imaging of microdefects in ZnGeP2 single crystals by X-ray topography,” J. Cryst. Growth 534, 125487 (2020).
    [Crossref]
  8. A. O. Okunev, G. A. Verozubova, and V. A. Stachenko, “X-ray topography contrast of edge dislocations in ZnGeP2 single crystals,” Bull. Novgorod State Univ. 2(75), 89–95 (2013).
  9. A. O. Okunev, G. A. Verozubova, V. A. Stashenko, and C. H. Yang, “Application of the polarization-optical method for studying the structural perfection of ZnGeP2 single crystals,” Bull. Novgorod State Univ. 1(75), 120–124 (2013).
  10. Z. Lei, A. O. Okunev, C. Zhu, G. A. Verozubova, T. Ma, and C. Yang, “Photoelasticy method for study of structural imperfection of ZnGeP2 crystals,” J. Cryst. Growth 450, 34–38 (2016).
    [Crossref]
  11. G. A. Verozubova, A. O. Okunev, A. I. Gribenyukov, A. Y. Trofimiv, A. V. Kolesnikov, and E. M. Trukhanov, “Growth and defect structure of ZnGeP2 crystals,” J. Cryst. Growth 312, 1122–1126 (2010).
    [Crossref]
  12. A. I. Gribenyukov, S. N. Podzy’valov, A. N. Soldatov, A. S. Shumeiko, N. A. Yudin, N. N. Yudin, and V. Y. Yurin, “Defectoscopy of ZnGeP2 single crystals using a strontium vapour laser,” Quantum Electron. 48, 491–494 (2018).
    [Crossref]
  13. V. V. Dyomin, A. I. Gribenyukov, S. N. Podzyvalov, N. N. Yudin, M. M. Zinoviev, I. G. Polovtsev, A. Davydova, and A. S. Olshukov, “Application of infrared digital holography for characterization of inhomogeneities and voluminous defects of single crystals on the example of ZnGeP2,” Appl. Sci. 10, 442 (2020).
    [Crossref]
  14. V. V. Dyomin, A. I. Gribenyukov, A. Davydova, M. M. Zinoviev, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Holography of particles for diagnostics tasks [Invited],” Appl. Opt. 58, G300–G310 (2019).
    [Crossref]
  15. A. I. Gribenyukov, N. N. Yudin, S. N. Podzyvalov, M. M. Zinoviev, A. S. Olshukov, A. S. Shumeiko, A. N. Soldatov, and N. A. Yudin, “Visualization of volumetric defects in a ZnGeP2 single-crystal by digital holography method using strontium vapor laser radiation,” Opt. Memory Neural Netw. 29, 147–156 (2020).
    [Crossref]
  16. V. V. Dyomin, I. G. Polovcev, and D. V. Kamenev, “The internal defects detection in crystals by digital holographic methods,” J. Phys. Conf. Ser. 737, 012072 (2016).
    [Crossref]
  17. V. V. Dyomin and D. V. Kamenev, “Methods of processing and retrieval of information from digital particle holograms and their application,” Radiophys. Quant. Electron. 57, 533–542 (2015).
    [Crossref]
  18. V. V. Dyomin and D. V. Kamenev, “Evaluation of algorithms for automatic data extraction from digital holographic images of particles,” Rus. Phys. J. 58, 1467–1474 (2016).
    [Crossref]
  19. V. V. Dyomin, A. S. Olshukov, and A. Y. Davydova, “Data acquisition from digital holograms of particles,” Proc. SPIE 10677, 106773B (2018).
    [Crossref]
  20. D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, 1st ed. (Springer, 2005).
  21. J. D. Rowley, J. K. Pierce, A. T. Brant, L. E. Halliburton, N. C. Giles, P. G. Schunemann, and A. D. Bristow, “Broadband terahertz pulse emission from ZnGeP2,” Opt. Lett. 37, 788–790 (2012).
    [Crossref]
  22. G. K. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett. 5, 559–576 (2008).
    [Crossref]
  23. K. Sangwal and K. W. Benz, “Impurity striations in crystals,” Prog. Cryst. Grow. Charact. 32, 135 (1996).
    [Crossref]
  24. G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, A. W. Vere, and C. J. Flinn, “ZnGeP2 growth: melt non- stoichiometry and defect substructure,” J. Cryst. Growth 237–239, 2000–2004 (2002).
    [Crossref]
  25. G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, O. Semchinova, and D. Uffman, “Synthesis and growth of ZnGeP2 crystals for non-linear optical applications,” J. Cryst. Growth 213, 334–339 (2000).
    [Crossref]
  26. G. A. Verozubova, A. I. Gribenyukov, and Y. P. Mironov, “Two-temperature synthesis of ZnGeP2,” Inorg. Mater. 43, 1040–1045 (2007).
    [Crossref]
  27. A. I. Gribenyukov, V. V. Dyomin, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovcev, and N. N. Yudin, “Investigation of the process of laser-induced damage of ZnGeP2 crystals using digital holography,” Rus. Phys. J. 61, 2042–2052 (2018).
    [Crossref]
  28. J. R. Carruthers, “Origins of convective temperature oscilations in crystal growth melts,” J. Cryst. Growth 32, 13–26 (1976).
    [Crossref]
  29. ISO, “Optics and photonics—Preparation of drawings for optical elements and systems,” ISO 10110.
  30. ISO, “Optics and photonics—Preparation of drawings for optical elements and systems. Part 1. Material inspections-bubbles and inclusions,” ISO 10110-1.
  31. ISO, “Optics and photonics—Preparation of drawings for optical elements and systems. Part 2. Material inspections-ingomogeneity and striae,” ISO 10110-2.
  32. ISO, “Lasers and laser-related equipment—Determination of laser-induced damage threshold of optical surfaces—Part 2: S-on-1 test,” ISO 11254-2:2001(E).

2020 (3)

Z. Lei, A. O. Okunev, C. Zhu, G. A. Verozubova, and C. Yang, “Imaging of microdefects in ZnGeP2 single crystals by X-ray topography,” J. Cryst. Growth 534, 125487 (2020).
[Crossref]

V. V. Dyomin, A. I. Gribenyukov, S. N. Podzyvalov, N. N. Yudin, M. M. Zinoviev, I. G. Polovtsev, A. Davydova, and A. S. Olshukov, “Application of infrared digital holography for characterization of inhomogeneities and voluminous defects of single crystals on the example of ZnGeP2,” Appl. Sci. 10, 442 (2020).
[Crossref]

A. I. Gribenyukov, N. N. Yudin, S. N. Podzyvalov, M. M. Zinoviev, A. S. Olshukov, A. S. Shumeiko, A. N. Soldatov, and N. A. Yudin, “Visualization of volumetric defects in a ZnGeP2 single-crystal by digital holography method using strontium vapor laser radiation,” Opt. Memory Neural Netw. 29, 147–156 (2020).
[Crossref]

2019 (2)

2018 (3)

A. I. Gribenyukov, S. N. Podzy’valov, A. N. Soldatov, A. S. Shumeiko, N. A. Yudin, N. N. Yudin, and V. Y. Yurin, “Defectoscopy of ZnGeP2 single crystals using a strontium vapour laser,” Quantum Electron. 48, 491–494 (2018).
[Crossref]

V. V. Dyomin, A. S. Olshukov, and A. Y. Davydova, “Data acquisition from digital holograms of particles,” Proc. SPIE 10677, 106773B (2018).
[Crossref]

A. I. Gribenyukov, V. V. Dyomin, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovcev, and N. N. Yudin, “Investigation of the process of laser-induced damage of ZnGeP2 crystals using digital holography,” Rus. Phys. J. 61, 2042–2052 (2018).
[Crossref]

2016 (4)

V. V. Dyomin and D. V. Kamenev, “Evaluation of algorithms for automatic data extraction from digital holographic images of particles,” Rus. Phys. J. 58, 1467–1474 (2016).
[Crossref]

V. V. Dyomin, I. G. Polovcev, and D. V. Kamenev, “The internal defects detection in crystals by digital holographic methods,” J. Phys. Conf. Ser. 737, 012072 (2016).
[Crossref]

P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33, D36–D43 (2016).
[Crossref]

Z. Lei, A. O. Okunev, C. Zhu, G. A. Verozubova, T. Ma, and C. Yang, “Photoelasticy method for study of structural imperfection of ZnGeP2 crystals,” J. Cryst. Growth 450, 34–38 (2016).
[Crossref]

2015 (1)

V. V. Dyomin and D. V. Kamenev, “Methods of processing and retrieval of information from digital particle holograms and their application,” Radiophys. Quant. Electron. 57, 533–542 (2015).
[Crossref]

2014 (1)

2013 (4)

A. O. Okunev, G. A. Verozubova, and V. A. Stachenko, “X-ray topography contrast of edge dislocations in ZnGeP2 single crystals,” Bull. Novgorod State Univ. 2(75), 89–95 (2013).

A. O. Okunev, G. A. Verozubova, V. A. Stashenko, and C. H. Yang, “Application of the polarization-optical method for studying the structural perfection of ZnGeP2 single crystals,” Bull. Novgorod State Univ. 1(75), 120–124 (2013).

A. Hemming, J. Richards, A. A. Davidson, N. Carmody, S. Bennetts, N. Simakov, and J. Haub, “99 W mid-IR operation of a ZGP OPO at 25% duty cycle,” Opt. Express 21, 10062–10069 (2013).
[Crossref]

G. A. Verozubova and A. O. Okunev, “Growth of ZnGeP2 non-linear optical crystals and their study by x-ray topography,” Adv. Sci. Lett. 19, 967–971 (2013).
[Crossref]

2012 (1)

2010 (1)

G. A. Verozubova, A. O. Okunev, A. I. Gribenyukov, A. Y. Trofimiv, A. V. Kolesnikov, and E. M. Trukhanov, “Growth and defect structure of ZnGeP2 crystals,” J. Cryst. Growth 312, 1122–1126 (2010).
[Crossref]

2008 (1)

G. K. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett. 5, 559–576 (2008).
[Crossref]

2007 (1)

G. A. Verozubova, A. I. Gribenyukov, and Y. P. Mironov, “Two-temperature synthesis of ZnGeP2,” Inorg. Mater. 43, 1040–1045 (2007).
[Crossref]

2002 (1)

G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, A. W. Vere, and C. J. Flinn, “ZnGeP2 growth: melt non- stoichiometry and defect substructure,” J. Cryst. Growth 237–239, 2000–2004 (2002).
[Crossref]

2000 (1)

G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, O. Semchinova, and D. Uffman, “Synthesis and growth of ZnGeP2 crystals for non-linear optical applications,” J. Cryst. Growth 213, 334–339 (2000).
[Crossref]

1996 (1)

K. Sangwal and K. W. Benz, “Impurity striations in crystals,” Prog. Cryst. Grow. Charact. 32, 135 (1996).
[Crossref]

1976 (1)

J. R. Carruthers, “Origins of convective temperature oscilations in crystal growth melts,” J. Cryst. Growth 32, 13–26 (1976).
[Crossref]

Bennetts, S.

Benz, K. W.

K. Sangwal and K. W. Benz, “Impurity striations in crystals,” Prog. Cryst. Grow. Charact. 32, 135 (1996).
[Crossref]

Brant, A. T.

Bristow, A. D.

Budni, P. A.

Carmody, N.

Carruthers, J. R.

J. R. Carruthers, “Origins of convective temperature oscilations in crystal growth melts,” J. Cryst. Growth 32, 13–26 (1976).
[Crossref]

Creeden, D. J.

Davidson, A. A.

Davydova, A.

V. V. Dyomin, A. I. Gribenyukov, S. N. Podzyvalov, N. N. Yudin, M. M. Zinoviev, I. G. Polovtsev, A. Davydova, and A. S. Olshukov, “Application of infrared digital holography for characterization of inhomogeneities and voluminous defects of single crystals on the example of ZnGeP2,” Appl. Sci. 10, 442 (2020).
[Crossref]

V. V. Dyomin, A. I. Gribenyukov, A. Davydova, M. M. Zinoviev, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Holography of particles for diagnostics tasks [Invited],” Appl. Opt. 58, G300–G310 (2019).
[Crossref]

Davydova, A. Y.

V. V. Dyomin, A. S. Olshukov, and A. Y. Davydova, “Data acquisition from digital holograms of particles,” Proc. SPIE 10677, 106773B (2018).
[Crossref]

Duan, X.

Dyomin, V. V.

V. V. Dyomin, A. I. Gribenyukov, S. N. Podzyvalov, N. N. Yudin, M. M. Zinoviev, I. G. Polovtsev, A. Davydova, and A. S. Olshukov, “Application of infrared digital holography for characterization of inhomogeneities and voluminous defects of single crystals on the example of ZnGeP2,” Appl. Sci. 10, 442 (2020).
[Crossref]

V. V. Dyomin, A. I. Gribenyukov, A. Davydova, M. M. Zinoviev, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Holography of particles for diagnostics tasks [Invited],” Appl. Opt. 58, G300–G310 (2019).
[Crossref]

V. V. Dyomin, A. S. Olshukov, and A. Y. Davydova, “Data acquisition from digital holograms of particles,” Proc. SPIE 10677, 106773B (2018).
[Crossref]

A. I. Gribenyukov, V. V. Dyomin, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovcev, and N. N. Yudin, “Investigation of the process of laser-induced damage of ZnGeP2 crystals using digital holography,” Rus. Phys. J. 61, 2042–2052 (2018).
[Crossref]

V. V. Dyomin and D. V. Kamenev, “Evaluation of algorithms for automatic data extraction from digital holographic images of particles,” Rus. Phys. J. 58, 1467–1474 (2016).
[Crossref]

V. V. Dyomin, I. G. Polovcev, and D. V. Kamenev, “The internal defects detection in crystals by digital holographic methods,” J. Phys. Conf. Ser. 737, 012072 (2016).
[Crossref]

V. V. Dyomin and D. V. Kamenev, “Methods of processing and retrieval of information from digital particle holograms and their application,” Radiophys. Quant. Electron. 57, 533–542 (2015).
[Crossref]

Flinn, C. J.

G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, A. W. Vere, and C. J. Flinn, “ZnGeP2 growth: melt non- stoichiometry and defect substructure,” J. Cryst. Growth 237–239, 2000–2004 (2002).
[Crossref]

Fonnum, H.

Giles, N. C.

Gribenyukov, A. I.

A. I. Gribenyukov, N. N. Yudin, S. N. Podzyvalov, M. M. Zinoviev, A. S. Olshukov, A. S. Shumeiko, A. N. Soldatov, and N. A. Yudin, “Visualization of volumetric defects in a ZnGeP2 single-crystal by digital holography method using strontium vapor laser radiation,” Opt. Memory Neural Netw. 29, 147–156 (2020).
[Crossref]

V. V. Dyomin, A. I. Gribenyukov, S. N. Podzyvalov, N. N. Yudin, M. M. Zinoviev, I. G. Polovtsev, A. Davydova, and A. S. Olshukov, “Application of infrared digital holography for characterization of inhomogeneities and voluminous defects of single crystals on the example of ZnGeP2,” Appl. Sci. 10, 442 (2020).
[Crossref]

V. V. Dyomin, A. I. Gribenyukov, A. Davydova, M. M. Zinoviev, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Holography of particles for diagnostics tasks [Invited],” Appl. Opt. 58, G300–G310 (2019).
[Crossref]

A. I. Gribenyukov, S. N. Podzy’valov, A. N. Soldatov, A. S. Shumeiko, N. A. Yudin, N. N. Yudin, and V. Y. Yurin, “Defectoscopy of ZnGeP2 single crystals using a strontium vapour laser,” Quantum Electron. 48, 491–494 (2018).
[Crossref]

A. I. Gribenyukov, V. V. Dyomin, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovcev, and N. N. Yudin, “Investigation of the process of laser-induced damage of ZnGeP2 crystals using digital holography,” Rus. Phys. J. 61, 2042–2052 (2018).
[Crossref]

G. A. Verozubova, A. O. Okunev, A. I. Gribenyukov, A. Y. Trofimiv, A. V. Kolesnikov, and E. M. Trukhanov, “Growth and defect structure of ZnGeP2 crystals,” J. Cryst. Growth 312, 1122–1126 (2010).
[Crossref]

G. A. Verozubova, A. I. Gribenyukov, and Y. P. Mironov, “Two-temperature synthesis of ZnGeP2,” Inorg. Mater. 43, 1040–1045 (2007).
[Crossref]

G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, A. W. Vere, and C. J. Flinn, “ZnGeP2 growth: melt non- stoichiometry and defect substructure,” J. Cryst. Growth 237–239, 2000–2004 (2002).
[Crossref]

G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, O. Semchinova, and D. Uffman, “Synthesis and growth of ZnGeP2 crystals for non-linear optical applications,” J. Cryst. Growth 213, 334–339 (2000).
[Crossref]

Haakestad, M. W.

Halliburton, L. E.

Haub, J.

Hemming, A.

Ju, Y.

Kamenev, D. V.

V. V. Dyomin and D. V. Kamenev, “Evaluation of algorithms for automatic data extraction from digital holographic images of particles,” Rus. Phys. J. 58, 1467–1474 (2016).
[Crossref]

V. V. Dyomin, I. G. Polovcev, and D. V. Kamenev, “The internal defects detection in crystals by digital holographic methods,” J. Phys. Conf. Ser. 737, 012072 (2016).
[Crossref]

V. V. Dyomin and D. V. Kamenev, “Methods of processing and retrieval of information from digital particle holograms and their application,” Radiophys. Quant. Electron. 57, 533–542 (2015).
[Crossref]

Kitaeva, G. K.

G. K. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett. 5, 559–576 (2008).
[Crossref]

Kolesnikov, A. V.

G. A. Verozubova, A. O. Okunev, A. I. Gribenyukov, A. Y. Trofimiv, A. V. Kolesnikov, and E. M. Trukhanov, “Growth and defect structure of ZnGeP2 crystals,” J. Cryst. Growth 312, 1122–1126 (2010).
[Crossref]

Korotkova, V. V.

G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, A. W. Vere, and C. J. Flinn, “ZnGeP2 growth: melt non- stoichiometry and defect substructure,” J. Cryst. Growth 237–239, 2000–2004 (2002).
[Crossref]

G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, O. Semchinova, and D. Uffman, “Synthesis and growth of ZnGeP2 crystals for non-linear optical applications,” J. Cryst. Growth 213, 334–339 (2000).
[Crossref]

Lei, Z.

Z. Lei, A. O. Okunev, C. Zhu, G. A. Verozubova, and C. Yang, “Imaging of microdefects in ZnGeP2 single crystals by X-ray topography,” J. Cryst. Growth 534, 125487 (2020).
[Crossref]

Z. Lei, A. O. Okunev, C. Zhu, G. A. Verozubova, T. Ma, and C. Yang, “Photoelasticy method for study of structural imperfection of ZnGeP2 crystals,” J. Cryst. Growth 450, 34–38 (2016).
[Crossref]

Libenson, M. N.

M. N. Libenson, E. B. Yakovlev, and G. D. Shandybina, Interaction of Laser Radiation with Matter (Power Optics). Lecture Notes. Part 1. Absorption of Laser Radiation in a Substance. (Interaction of Laser Radiation with Matter (Power Optics). Notes of Lectures. Part I. Absorption of Laser Radiation in Matter), V. P. Veiko, ed. (ITMO, 2008).

Lippert, E.

Liu, G.

Ma, T.

Z. Lei, A. O. Okunev, C. Zhu, G. A. Verozubova, T. Ma, and C. Yang, “Photoelasticy method for study of structural imperfection of ZnGeP2 crystals,” J. Cryst. Growth 450, 34–38 (2016).
[Crossref]

Mironov, Y. P.

G. A. Verozubova, A. I. Gribenyukov, and Y. P. Mironov, “Two-temperature synthesis of ZnGeP2,” Inorg. Mater. 43, 1040–1045 (2007).
[Crossref]

Nikogosyan, D.

D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, 1st ed. (Springer, 2005).

Okunev, A. O.

Z. Lei, A. O. Okunev, C. Zhu, G. A. Verozubova, and C. Yang, “Imaging of microdefects in ZnGeP2 single crystals by X-ray topography,” J. Cryst. Growth 534, 125487 (2020).
[Crossref]

Z. Lei, A. O. Okunev, C. Zhu, G. A. Verozubova, T. Ma, and C. Yang, “Photoelasticy method for study of structural imperfection of ZnGeP2 crystals,” J. Cryst. Growth 450, 34–38 (2016).
[Crossref]

A. O. Okunev, G. A. Verozubova, and V. A. Stachenko, “X-ray topography contrast of edge dislocations in ZnGeP2 single crystals,” Bull. Novgorod State Univ. 2(75), 89–95 (2013).

A. O. Okunev, G. A. Verozubova, V. A. Stashenko, and C. H. Yang, “Application of the polarization-optical method for studying the structural perfection of ZnGeP2 single crystals,” Bull. Novgorod State Univ. 1(75), 120–124 (2013).

G. A. Verozubova and A. O. Okunev, “Growth of ZnGeP2 non-linear optical crystals and their study by x-ray topography,” Adv. Sci. Lett. 19, 967–971 (2013).
[Crossref]

G. A. Verozubova, A. O. Okunev, A. I. Gribenyukov, A. Y. Trofimiv, A. V. Kolesnikov, and E. M. Trukhanov, “Growth and defect structure of ZnGeP2 crystals,” J. Cryst. Growth 312, 1122–1126 (2010).
[Crossref]

Olshukov, A. S.

V. V. Dyomin, A. I. Gribenyukov, S. N. Podzyvalov, N. N. Yudin, M. M. Zinoviev, I. G. Polovtsev, A. Davydova, and A. S. Olshukov, “Application of infrared digital holography for characterization of inhomogeneities and voluminous defects of single crystals on the example of ZnGeP2,” Appl. Sci. 10, 442 (2020).
[Crossref]

A. I. Gribenyukov, N. N. Yudin, S. N. Podzyvalov, M. M. Zinoviev, A. S. Olshukov, A. S. Shumeiko, A. N. Soldatov, and N. A. Yudin, “Visualization of volumetric defects in a ZnGeP2 single-crystal by digital holography method using strontium vapor laser radiation,” Opt. Memory Neural Netw. 29, 147–156 (2020).
[Crossref]

V. V. Dyomin, A. I. Gribenyukov, A. Davydova, M. M. Zinoviev, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Holography of particles for diagnostics tasks [Invited],” Appl. Opt. 58, G300–G310 (2019).
[Crossref]

V. V. Dyomin, A. S. Olshukov, and A. Y. Davydova, “Data acquisition from digital holograms of particles,” Proc. SPIE 10677, 106773B (2018).
[Crossref]

A. I. Gribenyukov, V. V. Dyomin, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovcev, and N. N. Yudin, “Investigation of the process of laser-induced damage of ZnGeP2 crystals using digital holography,” Rus. Phys. J. 61, 2042–2052 (2018).
[Crossref]

Pierce, J. K.

Podzy’valov, S. N.

A. I. Gribenyukov, S. N. Podzy’valov, A. N. Soldatov, A. S. Shumeiko, N. A. Yudin, N. N. Yudin, and V. Y. Yurin, “Defectoscopy of ZnGeP2 single crystals using a strontium vapour laser,” Quantum Electron. 48, 491–494 (2018).
[Crossref]

Podzyvalov, S. N.

V. V. Dyomin, A. I. Gribenyukov, S. N. Podzyvalov, N. N. Yudin, M. M. Zinoviev, I. G. Polovtsev, A. Davydova, and A. S. Olshukov, “Application of infrared digital holography for characterization of inhomogeneities and voluminous defects of single crystals on the example of ZnGeP2,” Appl. Sci. 10, 442 (2020).
[Crossref]

A. I. Gribenyukov, N. N. Yudin, S. N. Podzyvalov, M. M. Zinoviev, A. S. Olshukov, A. S. Shumeiko, A. N. Soldatov, and N. A. Yudin, “Visualization of volumetric defects in a ZnGeP2 single-crystal by digital holography method using strontium vapor laser radiation,” Opt. Memory Neural Netw. 29, 147–156 (2020).
[Crossref]

V. V. Dyomin, A. I. Gribenyukov, A. Davydova, M. M. Zinoviev, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Holography of particles for diagnostics tasks [Invited],” Appl. Opt. 58, G300–G310 (2019).
[Crossref]

A. I. Gribenyukov, V. V. Dyomin, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovcev, and N. N. Yudin, “Investigation of the process of laser-induced damage of ZnGeP2 crystals using digital holography,” Rus. Phys. J. 61, 2042–2052 (2018).
[Crossref]

Polovcev, I. G.

A. I. Gribenyukov, V. V. Dyomin, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovcev, and N. N. Yudin, “Investigation of the process of laser-induced damage of ZnGeP2 crystals using digital holography,” Rus. Phys. J. 61, 2042–2052 (2018).
[Crossref]

V. V. Dyomin, I. G. Polovcev, and D. V. Kamenev, “The internal defects detection in crystals by digital holographic methods,” J. Phys. Conf. Ser. 737, 012072 (2016).
[Crossref]

Polovtsev, I. G.

V. V. Dyomin, A. I. Gribenyukov, S. N. Podzyvalov, N. N. Yudin, M. M. Zinoviev, I. G. Polovtsev, A. Davydova, and A. S. Olshukov, “Application of infrared digital holography for characterization of inhomogeneities and voluminous defects of single crystals on the example of ZnGeP2,” Appl. Sci. 10, 442 (2020).
[Crossref]

V. V. Dyomin, A. I. Gribenyukov, A. Davydova, M. M. Zinoviev, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Holography of particles for diagnostics tasks [Invited],” Appl. Opt. 58, G300–G310 (2019).
[Crossref]

Pomeranz, L. A.

Qian, C.

Richards, J.

Rowley, J. D.

Sangwal, K.

K. Sangwal and K. W. Benz, “Impurity striations in crystals,” Prog. Cryst. Grow. Charact. 32, 135 (1996).
[Crossref]

Schunemann, P. G.

Semchinova, O.

G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, O. Semchinova, and D. Uffman, “Synthesis and growth of ZnGeP2 crystals for non-linear optical applications,” J. Cryst. Growth 213, 334–339 (2000).
[Crossref]

Shandybina, G. D.

M. N. Libenson, E. B. Yakovlev, and G. D. Shandybina, Interaction of Laser Radiation with Matter (Power Optics). Lecture Notes. Part 1. Absorption of Laser Radiation in a Substance. (Interaction of Laser Radiation with Matter (Power Optics). Notes of Lectures. Part I. Absorption of Laser Radiation in Matter), V. P. Veiko, ed. (ITMO, 2008).

Shumeiko, A. S.

A. I. Gribenyukov, N. N. Yudin, S. N. Podzyvalov, M. M. Zinoviev, A. S. Olshukov, A. S. Shumeiko, A. N. Soldatov, and N. A. Yudin, “Visualization of volumetric defects in a ZnGeP2 single-crystal by digital holography method using strontium vapor laser radiation,” Opt. Memory Neural Netw. 29, 147–156 (2020).
[Crossref]

A. I. Gribenyukov, S. N. Podzy’valov, A. N. Soldatov, A. S. Shumeiko, N. A. Yudin, N. N. Yudin, and V. Y. Yurin, “Defectoscopy of ZnGeP2 single crystals using a strontium vapour laser,” Quantum Electron. 48, 491–494 (2018).
[Crossref]

Simakov, N.

Soldatov, A. N.

A. I. Gribenyukov, N. N. Yudin, S. N. Podzyvalov, M. M. Zinoviev, A. S. Olshukov, A. S. Shumeiko, A. N. Soldatov, and N. A. Yudin, “Visualization of volumetric defects in a ZnGeP2 single-crystal by digital holography method using strontium vapor laser radiation,” Opt. Memory Neural Netw. 29, 147–156 (2020).
[Crossref]

A. I. Gribenyukov, S. N. Podzy’valov, A. N. Soldatov, A. S. Shumeiko, N. A. Yudin, N. N. Yudin, and V. Y. Yurin, “Defectoscopy of ZnGeP2 single crystals using a strontium vapour laser,” Quantum Electron. 48, 491–494 (2018).
[Crossref]

Stachenko, V. A.

A. O. Okunev, G. A. Verozubova, and V. A. Stachenko, “X-ray topography contrast of edge dislocations in ZnGeP2 single crystals,” Bull. Novgorod State Univ. 2(75), 89–95 (2013).

Stashenko, V. A.

A. O. Okunev, G. A. Verozubova, V. A. Stashenko, and C. H. Yang, “Application of the polarization-optical method for studying the structural perfection of ZnGeP2 single crystals,” Bull. Novgorod State Univ. 1(75), 120–124 (2013).

Trofimiv, A. Y.

G. A. Verozubova, A. O. Okunev, A. I. Gribenyukov, A. Y. Trofimiv, A. V. Kolesnikov, and E. M. Trukhanov, “Growth and defect structure of ZnGeP2 crystals,” J. Cryst. Growth 312, 1122–1126 (2010).
[Crossref]

Trukhanov, E. M.

G. A. Verozubova, A. O. Okunev, A. I. Gribenyukov, A. Y. Trofimiv, A. V. Kolesnikov, and E. M. Trukhanov, “Growth and defect structure of ZnGeP2 crystals,” J. Cryst. Growth 312, 1122–1126 (2010).
[Crossref]

Uffman, D.

G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, O. Semchinova, and D. Uffman, “Synthesis and growth of ZnGeP2 crystals for non-linear optical applications,” J. Cryst. Growth 213, 334–339 (2000).
[Crossref]

Vere, A. W.

G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, A. W. Vere, and C. J. Flinn, “ZnGeP2 growth: melt non- stoichiometry and defect substructure,” J. Cryst. Growth 237–239, 2000–2004 (2002).
[Crossref]

Verozubova, G. A.

Z. Lei, A. O. Okunev, C. Zhu, G. A. Verozubova, and C. Yang, “Imaging of microdefects in ZnGeP2 single crystals by X-ray topography,” J. Cryst. Growth 534, 125487 (2020).
[Crossref]

Z. Lei, A. O. Okunev, C. Zhu, G. A. Verozubova, T. Ma, and C. Yang, “Photoelasticy method for study of structural imperfection of ZnGeP2 crystals,” J. Cryst. Growth 450, 34–38 (2016).
[Crossref]

A. O. Okunev, G. A. Verozubova, V. A. Stashenko, and C. H. Yang, “Application of the polarization-optical method for studying the structural perfection of ZnGeP2 single crystals,” Bull. Novgorod State Univ. 1(75), 120–124 (2013).

A. O. Okunev, G. A. Verozubova, and V. A. Stachenko, “X-ray topography contrast of edge dislocations in ZnGeP2 single crystals,” Bull. Novgorod State Univ. 2(75), 89–95 (2013).

G. A. Verozubova and A. O. Okunev, “Growth of ZnGeP2 non-linear optical crystals and their study by x-ray topography,” Adv. Sci. Lett. 19, 967–971 (2013).
[Crossref]

G. A. Verozubova, A. O. Okunev, A. I. Gribenyukov, A. Y. Trofimiv, A. V. Kolesnikov, and E. M. Trukhanov, “Growth and defect structure of ZnGeP2 crystals,” J. Cryst. Growth 312, 1122–1126 (2010).
[Crossref]

G. A. Verozubova, A. I. Gribenyukov, and Y. P. Mironov, “Two-temperature synthesis of ZnGeP2,” Inorg. Mater. 43, 1040–1045 (2007).
[Crossref]

G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, A. W. Vere, and C. J. Flinn, “ZnGeP2 growth: melt non- stoichiometry and defect substructure,” J. Cryst. Growth 237–239, 2000–2004 (2002).
[Crossref]

G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, O. Semchinova, and D. Uffman, “Synthesis and growth of ZnGeP2 crystals for non-linear optical applications,” J. Cryst. Growth 213, 334–339 (2000).
[Crossref]

Wang, Y.

Yakovlev, E. B.

M. N. Libenson, E. B. Yakovlev, and G. D. Shandybina, Interaction of Laser Radiation with Matter (Power Optics). Lecture Notes. Part 1. Absorption of Laser Radiation in a Substance. (Interaction of Laser Radiation with Matter (Power Optics). Notes of Lectures. Part I. Absorption of Laser Radiation in Matter), V. P. Veiko, ed. (ITMO, 2008).

Yang, C.

Z. Lei, A. O. Okunev, C. Zhu, G. A. Verozubova, and C. Yang, “Imaging of microdefects in ZnGeP2 single crystals by X-ray topography,” J. Cryst. Growth 534, 125487 (2020).
[Crossref]

Z. Lei, A. O. Okunev, C. Zhu, G. A. Verozubova, T. Ma, and C. Yang, “Photoelasticy method for study of structural imperfection of ZnGeP2 crystals,” J. Cryst. Growth 450, 34–38 (2016).
[Crossref]

Yang, C. H.

A. O. Okunev, G. A. Verozubova, V. A. Stashenko, and C. H. Yang, “Application of the polarization-optical method for studying the structural perfection of ZnGeP2 single crystals,” Bull. Novgorod State Univ. 1(75), 120–124 (2013).

Yao, B.

Yudin, N. A.

A. I. Gribenyukov, N. N. Yudin, S. N. Podzyvalov, M. M. Zinoviev, A. S. Olshukov, A. S. Shumeiko, A. N. Soldatov, and N. A. Yudin, “Visualization of volumetric defects in a ZnGeP2 single-crystal by digital holography method using strontium vapor laser radiation,” Opt. Memory Neural Netw. 29, 147–156 (2020).
[Crossref]

A. I. Gribenyukov, S. N. Podzy’valov, A. N. Soldatov, A. S. Shumeiko, N. A. Yudin, N. N. Yudin, and V. Y. Yurin, “Defectoscopy of ZnGeP2 single crystals using a strontium vapour laser,” Quantum Electron. 48, 491–494 (2018).
[Crossref]

Yudin, N. N.

V. V. Dyomin, A. I. Gribenyukov, S. N. Podzyvalov, N. N. Yudin, M. M. Zinoviev, I. G. Polovtsev, A. Davydova, and A. S. Olshukov, “Application of infrared digital holography for characterization of inhomogeneities and voluminous defects of single crystals on the example of ZnGeP2,” Appl. Sci. 10, 442 (2020).
[Crossref]

A. I. Gribenyukov, N. N. Yudin, S. N. Podzyvalov, M. M. Zinoviev, A. S. Olshukov, A. S. Shumeiko, A. N. Soldatov, and N. A. Yudin, “Visualization of volumetric defects in a ZnGeP2 single-crystal by digital holography method using strontium vapor laser radiation,” Opt. Memory Neural Netw. 29, 147–156 (2020).
[Crossref]

V. V. Dyomin, A. I. Gribenyukov, A. Davydova, M. M. Zinoviev, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Holography of particles for diagnostics tasks [Invited],” Appl. Opt. 58, G300–G310 (2019).
[Crossref]

A. I. Gribenyukov, S. N. Podzy’valov, A. N. Soldatov, A. S. Shumeiko, N. A. Yudin, N. N. Yudin, and V. Y. Yurin, “Defectoscopy of ZnGeP2 single crystals using a strontium vapour laser,” Quantum Electron. 48, 491–494 (2018).
[Crossref]

A. I. Gribenyukov, V. V. Dyomin, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovcev, and N. N. Yudin, “Investigation of the process of laser-induced damage of ZnGeP2 crystals using digital holography,” Rus. Phys. J. 61, 2042–2052 (2018).
[Crossref]

Yurin, V. Y.

A. I. Gribenyukov, S. N. Podzy’valov, A. N. Soldatov, A. S. Shumeiko, N. A. Yudin, N. N. Yudin, and V. Y. Yurin, “Defectoscopy of ZnGeP2 single crystals using a strontium vapour laser,” Quantum Electron. 48, 491–494 (2018).
[Crossref]

Zawilski, K. T.

Zhao, B.

Zhu, C.

Z. Lei, A. O. Okunev, C. Zhu, G. A. Verozubova, and C. Yang, “Imaging of microdefects in ZnGeP2 single crystals by X-ray topography,” J. Cryst. Growth 534, 125487 (2020).
[Crossref]

Z. Lei, A. O. Okunev, C. Zhu, G. A. Verozubova, T. Ma, and C. Yang, “Photoelasticy method for study of structural imperfection of ZnGeP2 crystals,” J. Cryst. Growth 450, 34–38 (2016).
[Crossref]

Zinoviev, M. M.

V. V. Dyomin, A. I. Gribenyukov, S. N. Podzyvalov, N. N. Yudin, M. M. Zinoviev, I. G. Polovtsev, A. Davydova, and A. S. Olshukov, “Application of infrared digital holography for characterization of inhomogeneities and voluminous defects of single crystals on the example of ZnGeP2,” Appl. Sci. 10, 442 (2020).
[Crossref]

A. I. Gribenyukov, N. N. Yudin, S. N. Podzyvalov, M. M. Zinoviev, A. S. Olshukov, A. S. Shumeiko, A. N. Soldatov, and N. A. Yudin, “Visualization of volumetric defects in a ZnGeP2 single-crystal by digital holography method using strontium vapor laser radiation,” Opt. Memory Neural Netw. 29, 147–156 (2020).
[Crossref]

V. V. Dyomin, A. I. Gribenyukov, A. Davydova, M. M. Zinoviev, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovtsev, and N. N. Yudin, “Holography of particles for diagnostics tasks [Invited],” Appl. Opt. 58, G300–G310 (2019).
[Crossref]

Adv. Sci. Lett. (1)

G. A. Verozubova and A. O. Okunev, “Growth of ZnGeP2 non-linear optical crystals and their study by x-ray topography,” Adv. Sci. Lett. 19, 967–971 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Sci. (1)

V. V. Dyomin, A. I. Gribenyukov, S. N. Podzyvalov, N. N. Yudin, M. M. Zinoviev, I. G. Polovtsev, A. Davydova, and A. S. Olshukov, “Application of infrared digital holography for characterization of inhomogeneities and voluminous defects of single crystals on the example of ZnGeP2,” Appl. Sci. 10, 442 (2020).
[Crossref]

Bull. Novgorod State Univ. (2)

A. O. Okunev, G. A. Verozubova, and V. A. Stachenko, “X-ray topography contrast of edge dislocations in ZnGeP2 single crystals,” Bull. Novgorod State Univ. 2(75), 89–95 (2013).

A. O. Okunev, G. A. Verozubova, V. A. Stashenko, and C. H. Yang, “Application of the polarization-optical method for studying the structural perfection of ZnGeP2 single crystals,” Bull. Novgorod State Univ. 1(75), 120–124 (2013).

Inorg. Mater. (1)

G. A. Verozubova, A. I. Gribenyukov, and Y. P. Mironov, “Two-temperature synthesis of ZnGeP2,” Inorg. Mater. 43, 1040–1045 (2007).
[Crossref]

J. Cryst. Growth (6)

G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, A. W. Vere, and C. J. Flinn, “ZnGeP2 growth: melt non- stoichiometry and defect substructure,” J. Cryst. Growth 237–239, 2000–2004 (2002).
[Crossref]

G. A. Verozubova, A. I. Gribenyukov, V. V. Korotkova, O. Semchinova, and D. Uffman, “Synthesis and growth of ZnGeP2 crystals for non-linear optical applications,” J. Cryst. Growth 213, 334–339 (2000).
[Crossref]

J. R. Carruthers, “Origins of convective temperature oscilations in crystal growth melts,” J. Cryst. Growth 32, 13–26 (1976).
[Crossref]

Z. Lei, A. O. Okunev, C. Zhu, G. A. Verozubova, T. Ma, and C. Yang, “Photoelasticy method for study of structural imperfection of ZnGeP2 crystals,” J. Cryst. Growth 450, 34–38 (2016).
[Crossref]

G. A. Verozubova, A. O. Okunev, A. I. Gribenyukov, A. Y. Trofimiv, A. V. Kolesnikov, and E. M. Trukhanov, “Growth and defect structure of ZnGeP2 crystals,” J. Cryst. Growth 312, 1122–1126 (2010).
[Crossref]

Z. Lei, A. O. Okunev, C. Zhu, G. A. Verozubova, and C. Yang, “Imaging of microdefects in ZnGeP2 single crystals by X-ray topography,” J. Cryst. Growth 534, 125487 (2020).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Conf. Ser. (1)

V. V. Dyomin, I. G. Polovcev, and D. V. Kamenev, “The internal defects detection in crystals by digital holographic methods,” J. Phys. Conf. Ser. 737, 012072 (2016).
[Crossref]

Laser Phys. Lett. (1)

G. K. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett. 5, 559–576 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Memory Neural Netw. (1)

A. I. Gribenyukov, N. N. Yudin, S. N. Podzyvalov, M. M. Zinoviev, A. S. Olshukov, A. S. Shumeiko, A. N. Soldatov, and N. A. Yudin, “Visualization of volumetric defects in a ZnGeP2 single-crystal by digital holography method using strontium vapor laser radiation,” Opt. Memory Neural Netw. 29, 147–156 (2020).
[Crossref]

Proc. SPIE (1)

V. V. Dyomin, A. S. Olshukov, and A. Y. Davydova, “Data acquisition from digital holograms of particles,” Proc. SPIE 10677, 106773B (2018).
[Crossref]

Prog. Cryst. Grow. Charact. (1)

K. Sangwal and K. W. Benz, “Impurity striations in crystals,” Prog. Cryst. Grow. Charact. 32, 135 (1996).
[Crossref]

Quantum Electron. (1)

A. I. Gribenyukov, S. N. Podzy’valov, A. N. Soldatov, A. S. Shumeiko, N. A. Yudin, N. N. Yudin, and V. Y. Yurin, “Defectoscopy of ZnGeP2 single crystals using a strontium vapour laser,” Quantum Electron. 48, 491–494 (2018).
[Crossref]

Radiophys. Quant. Electron. (1)

V. V. Dyomin and D. V. Kamenev, “Methods of processing and retrieval of information from digital particle holograms and their application,” Radiophys. Quant. Electron. 57, 533–542 (2015).
[Crossref]

Rus. Phys. J. (2)

V. V. Dyomin and D. V. Kamenev, “Evaluation of algorithms for automatic data extraction from digital holographic images of particles,” Rus. Phys. J. 58, 1467–1474 (2016).
[Crossref]

A. I. Gribenyukov, V. V. Dyomin, A. S. Olshukov, S. N. Podzyvalov, I. G. Polovcev, and N. N. Yudin, “Investigation of the process of laser-induced damage of ZnGeP2 crystals using digital holography,” Rus. Phys. J. 61, 2042–2052 (2018).
[Crossref]

Other (6)

D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, 1st ed. (Springer, 2005).

ISO, “Optics and photonics—Preparation of drawings for optical elements and systems,” ISO 10110.

ISO, “Optics and photonics—Preparation of drawings for optical elements and systems. Part 1. Material inspections-bubbles and inclusions,” ISO 10110-1.

ISO, “Optics and photonics—Preparation of drawings for optical elements and systems. Part 2. Material inspections-ingomogeneity and striae,” ISO 10110-2.

ISO, “Lasers and laser-related equipment—Determination of laser-induced damage threshold of optical surfaces—Part 2: S-on-1 test,” ISO 11254-2:2001(E).

M. N. Libenson, E. B. Yakovlev, and G. D. Shandybina, Interaction of Laser Radiation with Matter (Power Optics). Lecture Notes. Part 1. Absorption of Laser Radiation in a Substance. (Interaction of Laser Radiation with Matter (Power Optics). Notes of Lectures. Part I. Absorption of Laser Radiation in Matter), V. P. Veiko, ed. (ITMO, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Digital holographic camera scheme. 1–laser diode with 1064 µm wavelength; 2–optical beam expander; 3–tested sample (${{\rm ZnGeP}_2}$ crystal, for example); 4–inclusion; 5–CMOS camera with pixel size 1.67 µm.
Fig. 2.
Fig. 2. (a) Photograph of the DHC-1.064, (b) spectral sensitivity of the digital camera matrix and the transmission spectrum of the ${{\rm ZnGeP}_2}$ single crystal.
Fig. 3.
Fig. 3. (a) Grown ${{\rm ZnGeP}_2}$ single crystal, (b) optical elements made of ${{\rm ZnGeP}_2}$ single crystals.
Fig. 4.
Fig. 4. Diagram of the ${{\rm ZnGeP}_2}$ growth synthesis under stoichiometry conditions.
Fig. 5.
Fig. 5. Fourier analysis of reconstructed growth striae images. (a) Reconstructed image of growth striae and intensity distribution by pixels of a reconstructed image along growth striae of the ${{\rm ZnGeP}_2}$ single crystal; (b) spectrum of growth striae repetition period [15].
Fig. 6.
Fig. 6. 3D patterning of crystal sample defects found on the basis of the results of holographic testing.
Fig. 7.
Fig. 7. Time lapses of parametric conversion inside ${{\rm ZnGeP}_2}$. Laser energy density on the frontal crystal surface was (a) ${1.6}\;{{\rm J/cm}^2}$ and (b) ${2.6}\;{{\rm J/cm}^2}$.
Fig. 8.
Fig. 8. (a) Breakdown development in the direction opposite the direction of exposure radiation propagation; (b) dynamics of optical breakdown (laser energy density on the frontal crystal surface was ${2.6}\;{{\rm J/cm}^2}$.

Tables (3)

Tables Icon

Table 1. DHC-1.064 Characteristics

Tables Icon

Table 2. Z n G e P 2 Inhomogeneities Found on the Basis of Holographic Studies and Their Effect on the Structure of a Passing Laser Beam

Tables Icon

Table 3. Non-Stoichiometric Inclusions in Z n G e P 2 Found on the Basis of Holographic Studies

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

U ( x 2 , y 2 , z ) = I H ( x 1 , y 1 ) exp ( i k z ) i λ z exp { i k 2 z [ ( x 2 x 1 ) 2 + ( y 2 y 1 ) 2 ] } d x 1 d y 1 .

Metrics