Abstract

The targeting task performance (TTP) model for prediction of target identification range suggests that boost filtering with a well-sampled, low-noise long-wave infrared (LWIR) sensor can substantially increase target ID range (by enhancing contrast at high spatial frequencies). We model a notional high-performance LWIR imaging system with a high F-number, deep electron wells, and a small-pitch focal plane array. System analysis performed with the Night Vision Integrated Performance Model (NVIPM) predicts that a range enhancement upwards of 50% is achievable with Wiener restoration applied to imagery from the modeled sensor. Human perception experiments were performed on simulated target imagery, with range through different boost filters (including a Wiener restoration filter) compared to the no-post-filter case. The TTP model was found to significantly overestimate the performance improvement due to boost and restoration filtering. Alternate predictions based on the Johnson criteria were also performed, and these underestimated the impact of boost. We speculate on reasons for the discrepancy and on promising avenues for future research. Sensor parameters, NVIPM predictions, filter parameters, and experimental data are provided.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Performance benefits of small-pitch, high-dynamic-range, digitally restored infrared imaging systems using triangle orientation discrimination and NVIPM

Robert Short, Ronald Driggers, Duke Littlejohn, and Mike Scholten
Appl. Opt. 58(23) 6315-6320 (2019)

Midwave infrared and visible sensor performance modeling: small craft identification discrimination criteria for maritime security

Keith Krapels, Ronald G. Driggers, Dawne Deaver, Steven K. Moyer, and John Palmer
Appl. Opt. 46(30) 7345-7353 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription