Abstract

The accuracy of particle detection and size estimation is limited by the physical size of the digital sensor used to record the hologram in a digital in-line holographic imaging system. In this paper, we propose to utilize the autoregressive (AR) interpolation of the hologram to increase pixel density and, effectively, the quality of hologram reconstruction. Simulation studies are conducted to evaluate the influence of AR interpolation of a hologram on the accuracy of detection and size estimation of single and multiple particles of varying sizes. A comparative study on the performance of different interpolation techniques indicates the advantage of the proposed AR hologram interpolation approach. An experimental result is provided to validate the suitability of the proposed algorithm in practical applications.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Improving axial localization of weak phase particles in digital in-line holography

Maxwell Shangraw and Hangjian Ling
Appl. Opt. 60(24) 7099-7106 (2021)

Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method

Daniel R. Guildenbecher, Jian Gao, Phillip L. Reu, and Jun Chen
Appl. Opt. 52(16) 3790-3801 (2013)

Autofocusing in digital holography using eigenvalues

Anik Ghosh, Rishikesh Kulkarni, and Pranab Kumar Mondal
Appl. Opt. 60(4) 1031-1040 (2021)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription