## Abstract

Measurement of large or aspheric optical surface shapes as a single aperture using interferometry is problematic for many reasons. A typical problem is the numerical aperture limitation of the interferometer transmission element and the surface slope deviation of aspheres. This deviation typically causes vignetting and spatial aliasing on the camera. A solution is subaperture measurement and subsequent subaperture stitching. A stitching algorithm, in principle, uses overlaps between subapertures to eliminate aberrations of each subaperture to obtain a full aperture for further analysis. This process is computation time demanding and requires optimization in order to obtain a result in a reasonable time to reduce, in turn, the overall manufacturing time. In this paper, a novel, to the best of our knowledge, and fast stitching method based on a system of linear equations is proposed and mathematically described. The developed method was compared with other algorithms, and theoretical computation complexity was calculated and compared. The method was tested practically, with real data measured on spherical surfaces using QED ASI (QED Technologies aspheric stitching interferometer) and an experimental interferometer, and the results are presented. Stitching quality was quantified for results and compared to other algorithms.

© 2021 Optical Society of America

Full Article | PDF Article**More Like This**

Lei Zhang, Dong Liu, Tu Shi, Yongying Yang, Shiyao Chong, Baoliang Ge, Yibing Shen, and Jian Bai

Opt. Express **23**(15) 19176-19188 (2015)

Yongfu Wen, Haobo Cheng, Hon-Yuen Tam, and Dongmei Zhou

Appl. Opt. **52**(23) 5686-5694 (2013)

Zhichao Dong, Haobo Cheng, Yunpeng Feng, Jingshi Su, Hengyu Wu, and Hon-Yuen Tam

Appl. Opt. **54**(19) 5962-5969 (2015)