Abstract

We discuss the design, fabrication, and characterization of silicon-nitride microring resonators for nonlinear-photonic and biosensing device applications. The first part presents new theoretical and experimental results that overcome highly normal dispersion of silicon-nitride microresonators by adding a dispersive coupler. The latter parts review our work on highly efficient second-order nonlinear interaction in a hybrid silicon-nitride slot waveguide with nonlinear polymer cladding and silicon-nitride microring application as a biosensor for human stress indicator neuropeptide Y at the nanomolar level.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Hybrid plasmonic slot waveguide with a metallic grating for on-chip biosensing applications

S. Hadi Badri, Sanam SaeidNahaei, and Jong Su Kim
Appl. Opt. 60(25) 7828-7833 (2021)

Thermal tuning of Kerr frequency combs in silicon nitride microring resonators

Xiaoxiao Xue, Yi Xuan, Cong Wang, Pei-Hsun Wang, Yang Liu, Ben Niu, Daniel E. Leaird, Minghao Qi, and Andrew M. Weiner
Opt. Express 24(1) 687-698 (2016)

References

  • View by:

  1. P. Del’ Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [Crossref]
  2. S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
    [Crossref]
  3. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
    [Crossref]
  4. W. Liang, A. Savchenkov, Z. Xie, J. McMillan, J. Burkhart, V. Ilchenko, C. Wong, A. Matsko, and L. Maleki, “Miniature multioctave light source based on a monolithic microcavity,” Optica 2, 40–47 (2015).
    [Crossref]
  5. S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
    [Crossref]
  6. J. Spring, P. Salter, B. Metcalf, P. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X. Jin, N. Langford, W. Kolthammer, M. Booth, and I. Walmsley, “On-chip low loss heralded source of pure single photons,” Opt. Express 21, 13522–13532 (2013).
    [Crossref]
  7. C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
    [Crossref]
  8. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623–1625 (1999).
    [Crossref]
  9. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, S. T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
    [Crossref]
  10. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  11. S. Das, B. Wenner, J. Allen, M. Allen, and M. Vasilyev, “Hybrid silicon-nitride/polymer waveguide for nonlinear-optics applications,” in Conference on Lasers & Electro-optics (CLEO), San Jose, California, 13–18 May2018, paper JTu2A.77.
  12. S. Das, B. R. Wenner, J. W. Allen, M. S. Allen, and M. Vasilyev, “Robustness of second-harmonic generation in a hybrid SiN/polymer waveguide,” in IEEE Photonics Society’s Research and Applications of Photonics in Defense Conference (RAPID) Conference, Miramar Beach, Florida, 22–24 August2018, paper ThC2.7.
  13. S. Das, B. R. Wenner, J. W. Allen, M. S. Allen, and M. Vasilyev, “Investigation of hybrid silicon-nitride/polymer waveguides for second-harmonic generation,” IEEE Photon. J. 11, 4500509 (2019).
    [Crossref]
  14. S. Das, S. Samudrala, K. Lee, B. Wenner, J. W. Allen, M. Allen, R. Magnusson, and M. Vasilyev, “Investigation of Si3N4 microring resonator for bio-chemical sensing applications,” in Proceedings Frontiers in Optics, Washington, DC, 16–20 September2018, paper JW3A.98.
  15. S. Das, S. C. Samudrala, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “Investigation of neuropeptide Y detection by a silicon-nitride microring resonator,” in Proceedings IEEE RAPID Conference, Miramar Beach, Florida, 19–21 August2019, paper WC1.4.
  16. S. Das, S. C. Samudrala, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “Towards the detection of neuropeptide Y at nanomolar level by a SiN microring resonator,” in Proceedings IEEE Photonics Conference, 28September–1 October 2020, paper TuF4.2.
  17. S. Das, S. C. Samudrala, K. J. Lee, M. G. Abdallah, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “SiN-microring-resonator-based optical biosensor for neuropeptide Y detection,” IEEE Photon. Technol. Lett.33, (2021) in press.
    [Crossref]
  18. D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self-phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96, 061101 (2010).
    [Crossref]
  19. Y. Okawachi, M. R. E. Lamont, K. Luke, D. O. Carvalho, M. Yu, M. Lipson, and A. L. Gaeta, “Bandwidth shaping of microresonator-based frequency combs via dispersion engineering,” Opt. Lett. 39, 3535–3538 (2014).
    [Crossref]
  20. M. Yang, L. Xu, J. Wang, H. Liu, X. Zhou, G. Li, and L. Zhang, “An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 8300607 (2018).
    [Crossref]
  21. J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23, 642–648 (2015).
    [Crossref]
  22. J. Chavez Boggio, D. Bodenmüller, T. Fremberg, R. Haynes, M. Roth, R. Eisermann, M. Lisker, L. Zimmermann, and M. Böhm, “Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization,” J. Opt. Soc. Am. B 31, 2846–2857 (2014).
    [Crossref]
  23. G. Zhao, T. Zhao, H. Xiao, Z. Liu, G. Liu, J. Yang, Z. Ren, J. Bai, and Y. Tian, “Tunable Fano resonances based on microring resonator with feedback coupled waveguide,” Opt. Express 24, 20187–20195 (2016).
    [Crossref]
  24. L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8, 884 (2017).
    [Crossref]
  25. P. G. Patki, P. Guan, L. Li, T. I. Lakoba, L. K. Oxenløwe, M. Vasilyev, and M. Galili, “Recent progress on optical regeneration of wavelength-division-multiplexed data,” IEEE J. Sel. Top. Quantum Electron. 27, 7700812 (2021).
    [Crossref]
  26. M. Bariya, H. Y. Y. Nyein, and A. Javey, “Wearable sweat sensors,” Nat. Electron. 1, 160–171 (2018).
    [Crossref]
  27. F. Ghasemia, E. S. Hosseini, X. Song, D. S. Gottfried, M. Chamanzar, M. Raeiszadehd, R. D. Cummings, A. A. Eftekhar, and A. Adibi, “Multiplexed detection of lectins using integrated glycan-coated microring resonators,” Biosens. Bioelectron. 80, 682–690 (2016).
    [Crossref]
  28. J. Wang, Z. Yao, and A. W. Poon, “Silicon-nitride-based integrated optofluidic biochemical sensors using a coupled-resonator optical waveguide,” Front. Mater. 2, 34 (2015).
    [Crossref]
  29. R. Magnusson, K. J. Lee, H. Hemmati, Y. H. Ko, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, and D. Wawro Weidanz, “The guided-mode resonance biosensor: principles, technology, and implementation,” Proc. SPIE 10510, 105100G (2018).
    [Crossref]
  30. M. G. Abdallah, J. A. Buchanan-Vega, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, D. Wawro Weidanz, and R. Magnusson, “Quantification of neuropeptide Y with picomolar sensitivity enabled by guided-mode resonance biosensors,” Sensors 20, 126 (2020).
    [Crossref]

2021 (1)

P. G. Patki, P. Guan, L. Li, T. I. Lakoba, L. K. Oxenløwe, M. Vasilyev, and M. Galili, “Recent progress on optical regeneration of wavelength-division-multiplexed data,” IEEE J. Sel. Top. Quantum Electron. 27, 7700812 (2021).
[Crossref]

2020 (1)

M. G. Abdallah, J. A. Buchanan-Vega, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, D. Wawro Weidanz, and R. Magnusson, “Quantification of neuropeptide Y with picomolar sensitivity enabled by guided-mode resonance biosensors,” Sensors 20, 126 (2020).
[Crossref]

2019 (1)

S. Das, B. R. Wenner, J. W. Allen, M. S. Allen, and M. Vasilyev, “Investigation of hybrid silicon-nitride/polymer waveguides for second-harmonic generation,” IEEE Photon. J. 11, 4500509 (2019).
[Crossref]

2018 (3)

M. Yang, L. Xu, J. Wang, H. Liu, X. Zhou, G. Li, and L. Zhang, “An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 8300607 (2018).
[Crossref]

R. Magnusson, K. J. Lee, H. Hemmati, Y. H. Ko, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, and D. Wawro Weidanz, “The guided-mode resonance biosensor: principles, technology, and implementation,” Proc. SPIE 10510, 105100G (2018).
[Crossref]

M. Bariya, H. Y. Y. Nyein, and A. Javey, “Wearable sweat sensors,” Nat. Electron. 1, 160–171 (2018).
[Crossref]

2017 (1)

L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8, 884 (2017).
[Crossref]

2016 (2)

F. Ghasemia, E. S. Hosseini, X. Song, D. S. Gottfried, M. Chamanzar, M. Raeiszadehd, R. D. Cummings, A. A. Eftekhar, and A. Adibi, “Multiplexed detection of lectins using integrated glycan-coated microring resonators,” Biosens. Bioelectron. 80, 682–690 (2016).
[Crossref]

G. Zhao, T. Zhao, H. Xiao, Z. Liu, G. Liu, J. Yang, Z. Ren, J. Bai, and Y. Tian, “Tunable Fano resonances based on microring resonator with feedback coupled waveguide,” Opt. Express 24, 20187–20195 (2016).
[Crossref]

2015 (3)

2014 (3)

2013 (2)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

J. Spring, P. Salter, B. Metcalf, P. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X. Jin, N. Langford, W. Kolthammer, M. Booth, and I. Walmsley, “On-chip low loss heralded source of pure single photons,” Opt. Express 21, 13522–13532 (2013).
[Crossref]

2012 (2)

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20, 23100–23107 (2012).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, S. T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

2011 (2)

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

2010 (1)

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self-phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96, 061101 (2010).
[Crossref]

2007 (1)

P. Del’ Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

1999 (1)

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623–1625 (1999).
[Crossref]

Abdallah, M. G.

M. G. Abdallah, J. A. Buchanan-Vega, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, D. Wawro Weidanz, and R. Magnusson, “Quantification of neuropeptide Y with picomolar sensitivity enabled by guided-mode resonance biosensors,” Sensors 20, 126 (2020).
[Crossref]

S. Das, S. C. Samudrala, K. J. Lee, M. G. Abdallah, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “SiN-microring-resonator-based optical biosensor for neuropeptide Y detection,” IEEE Photon. Technol. Lett.33, (2021) in press.
[Crossref]

Adibi, A.

F. Ghasemia, E. S. Hosseini, X. Song, D. S. Gottfried, M. Chamanzar, M. Raeiszadehd, R. D. Cummings, A. A. Eftekhar, and A. Adibi, “Multiplexed detection of lectins using integrated glycan-coated microring resonators,” Biosens. Bioelectron. 80, 682–690 (2016).
[Crossref]

Allen, J.

S. Das, B. Wenner, J. Allen, M. Allen, and M. Vasilyev, “Hybrid silicon-nitride/polymer waveguide for nonlinear-optics applications,” in Conference on Lasers & Electro-optics (CLEO), San Jose, California, 13–18 May2018, paper JTu2A.77.

Allen, J. W.

M. G. Abdallah, J. A. Buchanan-Vega, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, D. Wawro Weidanz, and R. Magnusson, “Quantification of neuropeptide Y with picomolar sensitivity enabled by guided-mode resonance biosensors,” Sensors 20, 126 (2020).
[Crossref]

S. Das, B. R. Wenner, J. W. Allen, M. S. Allen, and M. Vasilyev, “Investigation of hybrid silicon-nitride/polymer waveguides for second-harmonic generation,” IEEE Photon. J. 11, 4500509 (2019).
[Crossref]

R. Magnusson, K. J. Lee, H. Hemmati, Y. H. Ko, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, and D. Wawro Weidanz, “The guided-mode resonance biosensor: principles, technology, and implementation,” Proc. SPIE 10510, 105100G (2018).
[Crossref]

S. Das, B. R. Wenner, J. W. Allen, M. S. Allen, and M. Vasilyev, “Robustness of second-harmonic generation in a hybrid SiN/polymer waveguide,” in IEEE Photonics Society’s Research and Applications of Photonics in Defense Conference (RAPID) Conference, Miramar Beach, Florida, 22–24 August2018, paper ThC2.7.

S. Das, S. Samudrala, K. Lee, B. Wenner, J. W. Allen, M. Allen, R. Magnusson, and M. Vasilyev, “Investigation of Si3N4 microring resonator for bio-chemical sensing applications,” in Proceedings Frontiers in Optics, Washington, DC, 16–20 September2018, paper JW3A.98.

S. Das, S. C. Samudrala, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “Investigation of neuropeptide Y detection by a silicon-nitride microring resonator,” in Proceedings IEEE RAPID Conference, Miramar Beach, Florida, 19–21 August2019, paper WC1.4.

S. Das, S. C. Samudrala, K. J. Lee, M. G. Abdallah, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “SiN-microring-resonator-based optical biosensor for neuropeptide Y detection,” IEEE Photon. Technol. Lett.33, (2021) in press.
[Crossref]

S. Das, S. C. Samudrala, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “Towards the detection of neuropeptide Y at nanomolar level by a SiN microring resonator,” in Proceedings IEEE Photonics Conference, 28September–1 October 2020, paper TuF4.2.

Allen, M.

S. Das, S. Samudrala, K. Lee, B. Wenner, J. W. Allen, M. Allen, R. Magnusson, and M. Vasilyev, “Investigation of Si3N4 microring resonator for bio-chemical sensing applications,” in Proceedings Frontiers in Optics, Washington, DC, 16–20 September2018, paper JW3A.98.

S. Das, B. Wenner, J. Allen, M. Allen, and M. Vasilyev, “Hybrid silicon-nitride/polymer waveguide for nonlinear-optics applications,” in Conference on Lasers & Electro-optics (CLEO), San Jose, California, 13–18 May2018, paper JTu2A.77.

Allen, M. S.

M. G. Abdallah, J. A. Buchanan-Vega, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, D. Wawro Weidanz, and R. Magnusson, “Quantification of neuropeptide Y with picomolar sensitivity enabled by guided-mode resonance biosensors,” Sensors 20, 126 (2020).
[Crossref]

S. Das, B. R. Wenner, J. W. Allen, M. S. Allen, and M. Vasilyev, “Investigation of hybrid silicon-nitride/polymer waveguides for second-harmonic generation,” IEEE Photon. J. 11, 4500509 (2019).
[Crossref]

R. Magnusson, K. J. Lee, H. Hemmati, Y. H. Ko, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, and D. Wawro Weidanz, “The guided-mode resonance biosensor: principles, technology, and implementation,” Proc. SPIE 10510, 105100G (2018).
[Crossref]

S. Das, B. R. Wenner, J. W. Allen, M. S. Allen, and M. Vasilyev, “Robustness of second-harmonic generation in a hybrid SiN/polymer waveguide,” in IEEE Photonics Society’s Research and Applications of Photonics in Defense Conference (RAPID) Conference, Miramar Beach, Florida, 22–24 August2018, paper ThC2.7.

S. Das, S. C. Samudrala, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “Investigation of neuropeptide Y detection by a silicon-nitride microring resonator,” in Proceedings IEEE RAPID Conference, Miramar Beach, Florida, 19–21 August2019, paper WC1.4.

S. Das, S. C. Samudrala, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “Towards the detection of neuropeptide Y at nanomolar level by a SiN microring resonator,” in Proceedings IEEE Photonics Conference, 28September–1 October 2020, paper TuF4.2.

S. Das, S. C. Samudrala, K. J. Lee, M. G. Abdallah, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “SiN-microring-resonator-based optical biosensor for neuropeptide Y detection,” IEEE Photon. Technol. Lett.33, (2021) in press.
[Crossref]

Annamalai, M.

L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8, 884 (2017).
[Crossref]

Arcizet, O.

P. Del’ Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Azzini, S.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, S. T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Bai, J.

Bajoni, D.

Barbieri, M.

Bariya, M.

M. Bariya, H. Y. Y. Nyein, and A. Javey, “Wearable sweat sensors,” Nat. Electron. 1, 160–171 (2018).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, S. T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Bodenmüller, D.

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, S. T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Böhm, M.

Boller, K.-J.

Booth, M.

Bruce, A. J.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623–1625 (1999).
[Crossref]

Buchanan-Vega, J. A.

M. G. Abdallah, J. A. Buchanan-Vega, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, D. Wawro Weidanz, and R. Magnusson, “Quantification of neuropeptide Y with picomolar sensitivity enabled by guided-mode resonance biosensors,” Sensors 20, 126 (2020).
[Crossref]

Burkhart, J.

Campbell, B. D.

L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8, 884 (2017).
[Crossref]

Cappuzzo, M. A.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623–1625 (1999).
[Crossref]

Carvalho, D. O.

Caspani, L.

Chamanzar, M.

F. Ghasemia, E. S. Hosseini, X. Song, D. S. Gottfried, M. Chamanzar, M. Raeiszadehd, R. D. Cummings, A. A. Eftekhar, and A. Adibi, “Multiplexed detection of lectins using integrated glycan-coated microring resonators,” Biosens. Bioelectron. 80, 682–690 (2016).
[Crossref]

Chavez Boggio, J.

Chen, L.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Chu, S. T.

Claes, S. T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, S. T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Clerici, M.

Cummings, R. D.

F. Ghasemia, E. S. Hosseini, X. Song, D. S. Gottfried, M. Chamanzar, M. Raeiszadehd, R. D. Cummings, A. A. Eftekhar, and A. Adibi, “Multiplexed detection of lectins using integrated glycan-coated microring resonators,” Biosens. Bioelectron. 80, 682–690 (2016).
[Crossref]

Das, S.

S. Das, B. R. Wenner, J. W. Allen, M. S. Allen, and M. Vasilyev, “Investigation of hybrid silicon-nitride/polymer waveguides for second-harmonic generation,” IEEE Photon. J. 11, 4500509 (2019).
[Crossref]

S. Das, S. Samudrala, K. Lee, B. Wenner, J. W. Allen, M. Allen, R. Magnusson, and M. Vasilyev, “Investigation of Si3N4 microring resonator for bio-chemical sensing applications,” in Proceedings Frontiers in Optics, Washington, DC, 16–20 September2018, paper JW3A.98.

S. Das, B. R. Wenner, J. W. Allen, M. S. Allen, and M. Vasilyev, “Robustness of second-harmonic generation in a hybrid SiN/polymer waveguide,” in IEEE Photonics Society’s Research and Applications of Photonics in Defense Conference (RAPID) Conference, Miramar Beach, Florida, 22–24 August2018, paper ThC2.7.

S. Das, B. Wenner, J. Allen, M. Allen, and M. Vasilyev, “Hybrid silicon-nitride/polymer waveguide for nonlinear-optics applications,” in Conference on Lasers & Electro-optics (CLEO), San Jose, California, 13–18 May2018, paper JTu2A.77.

S. Das, S. C. Samudrala, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “Towards the detection of neuropeptide Y at nanomolar level by a SiN microring resonator,” in Proceedings IEEE Photonics Conference, 28September–1 October 2020, paper TuF4.2.

S. Das, S. C. Samudrala, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “Investigation of neuropeptide Y detection by a silicon-nitride microring resonator,” in Proceedings IEEE RAPID Conference, Miramar Beach, Florida, 19–21 August2019, paper WC1.4.

S. Das, S. C. Samudrala, K. J. Lee, M. G. Abdallah, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “SiN-microring-resonator-based optical biosensor for neuropeptide Y detection,” IEEE Photon. Technol. Lett.33, (2021) in press.
[Crossref]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, S. T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, S. T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Del’ Haye, P.

P. Del’ Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Diddams, S. A.

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, S. T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Eftekhar, A. A.

F. Ghasemia, E. S. Hosseini, X. Song, D. S. Gottfried, M. Chamanzar, M. Raeiszadehd, R. D. Cummings, A. A. Eftekhar, and A. Adibi, “Multiplexed detection of lectins using integrated glycan-coated microring resonators,” Biosens. Bioelectron. 80, 682–690 (2016).
[Crossref]

Eisermann, R.

Epping, J. P.

Fainman, Y.

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self-phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96, 061101 (2010).
[Crossref]

Ferdous, F.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Ferrera, M.

Fremberg, T.

Gaeta, A. L.

Y. Okawachi, M. R. E. Lamont, K. Luke, D. O. Carvalho, M. Yu, M. Lipson, and A. L. Gaeta, “Bandwidth shaping of microresonator-based frequency combs via dispersion engineering,” Opt. Lett. 39, 3535–3538 (2014).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Galili, M.

P. G. Patki, P. Guan, L. Li, T. I. Lakoba, L. K. Oxenløwe, M. Vasilyev, and M. Galili, “Recent progress on optical regeneration of wavelength-division-multiplexed data,” IEEE J. Sel. Top. Quantum Electron. 27, 7700812 (2021).
[Crossref]

Galli, M.

Ghasemia, F.

F. Ghasemia, E. S. Hosseini, X. Song, D. S. Gottfried, M. Chamanzar, M. Raeiszadehd, R. D. Cummings, A. A. Eftekhar, and A. Adibi, “Multiplexed detection of lectins using integrated glycan-coated microring resonators,” Biosens. Bioelectron. 80, 682–690 (2016).
[Crossref]

Gimlin, S.

M. G. Abdallah, J. A. Buchanan-Vega, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, D. Wawro Weidanz, and R. Magnusson, “Quantification of neuropeptide Y with picomolar sensitivity enabled by guided-mode resonance biosensors,” Sensors 20, 126 (2020).
[Crossref]

R. Magnusson, K. J. Lee, H. Hemmati, Y. H. Ko, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, and D. Wawro Weidanz, “The guided-mode resonance biosensor: principles, technology, and implementation,” Proc. SPIE 10510, 105100G (2018).
[Crossref]

Gomez, L. T.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623–1625 (1999).
[Crossref]

Gottfried, D. S.

F. Ghasemia, E. S. Hosseini, X. Song, D. S. Gottfried, M. Chamanzar, M. Raeiszadehd, R. D. Cummings, A. A. Eftekhar, and A. Adibi, “Multiplexed detection of lectins using integrated glycan-coated microring resonators,” Biosens. Bioelectron. 80, 682–690 (2016).
[Crossref]

Grassani, D.

Guan, P.

P. G. Patki, P. Guan, L. Li, T. I. Lakoba, L. K. Oxenløwe, M. Vasilyev, and M. Galili, “Recent progress on optical regeneration of wavelength-division-multiplexed data,” IEEE J. Sel. Top. Quantum Electron. 27, 7700812 (2021).
[Crossref]

Haynes, R.

Heideman, R. G.

Helt, L. G.

Hemmati, H.

R. Magnusson, K. J. Lee, H. Hemmati, Y. H. Ko, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, and D. Wawro Weidanz, “The guided-mode resonance biosensor: principles, technology, and implementation,” Proc. SPIE 10510, 105100G (2018).
[Crossref]

Hoekman, M.

Holzwarth, R.

P. Del’ Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Hosseini, E. S.

F. Ghasemia, E. S. Hosseini, X. Song, D. S. Gottfried, M. Chamanzar, M. Raeiszadehd, R. D. Cummings, A. A. Eftekhar, and A. Adibi, “Multiplexed detection of lectins using integrated glycan-coated microring resonators,” Biosens. Bioelectron. 80, 682–690 (2016).
[Crossref]

Humphreys, P.

Ikeda, K.

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self-phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96, 061101 (2010).
[Crossref]

Ilchenko, V.

Javey, A.

M. Bariya, H. Y. Y. Nyein, and A. Javey, “Wearable sweat sensors,” Nat. Electron. 1, 160–171 (2018).
[Crossref]

Jin, X.

Kippenberg, T. J.

P. Del’ Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Ko, Y. H.

R. Magnusson, K. J. Lee, H. Hemmati, Y. H. Ko, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, and D. Wawro Weidanz, “The guided-mode resonance biosensor: principles, technology, and implementation,” Proc. SPIE 10510, 105100G (2018).
[Crossref]

Kolthammer, W.

Kues, M.

Kumar, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, S. T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Kwon, Y. B.

L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8, 884 (2017).
[Crossref]

Lakoba, T. I.

P. G. Patki, P. Guan, L. Li, T. I. Lakoba, L. K. Oxenløwe, M. Vasilyev, and M. Galili, “Recent progress on optical regeneration of wavelength-division-multiplexed data,” IEEE J. Sel. Top. Quantum Electron. 27, 7700812 (2021).
[Crossref]

L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8, 884 (2017).
[Crossref]

Lamont, M. R. E.

Langford, N.

Leaird, D. E.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Lee, C. J.

Lee, K.

S. Das, S. Samudrala, K. Lee, B. Wenner, J. W. Allen, M. Allen, R. Magnusson, and M. Vasilyev, “Investigation of Si3N4 microring resonator for bio-chemical sensing applications,” in Proceedings Frontiers in Optics, Washington, DC, 16–20 September2018, paper JW3A.98.

Lee, K. J.

M. G. Abdallah, J. A. Buchanan-Vega, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, D. Wawro Weidanz, and R. Magnusson, “Quantification of neuropeptide Y with picomolar sensitivity enabled by guided-mode resonance biosensors,” Sensors 20, 126 (2020).
[Crossref]

R. Magnusson, K. J. Lee, H. Hemmati, Y. H. Ko, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, and D. Wawro Weidanz, “The guided-mode resonance biosensor: principles, technology, and implementation,” Proc. SPIE 10510, 105100G (2018).
[Crossref]

S. Das, S. C. Samudrala, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “Investigation of neuropeptide Y detection by a silicon-nitride microring resonator,” in Proceedings IEEE RAPID Conference, Miramar Beach, Florida, 19–21 August2019, paper WC1.4.

S. Das, S. C. Samudrala, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “Towards the detection of neuropeptide Y at nanomolar level by a SiN microring resonator,” in Proceedings IEEE Photonics Conference, 28September–1 October 2020, paper TuF4.2.

S. Das, S. C. Samudrala, K. J. Lee, M. G. Abdallah, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “SiN-microring-resonator-based optical biosensor for neuropeptide Y detection,” IEEE Photon. Technol. Lett.33, (2021) in press.
[Crossref]

Leinse, A.

Lenz, G.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623–1625 (1999).
[Crossref]

Li, G.

M. Yang, L. Xu, J. Wang, H. Liu, X. Zhou, G. Li, and L. Zhang, “An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 8300607 (2018).
[Crossref]

Li, L.

P. G. Patki, P. Guan, L. Li, T. I. Lakoba, L. K. Oxenløwe, M. Vasilyev, and M. Galili, “Recent progress on optical regeneration of wavelength-division-multiplexed data,” IEEE J. Sel. Top. Quantum Electron. 27, 7700812 (2021).
[Crossref]

L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8, 884 (2017).
[Crossref]

Liang, W.

Lipson, M.

Y. Okawachi, M. R. E. Lamont, K. Luke, D. O. Carvalho, M. Yu, M. Lipson, and A. L. Gaeta, “Bandwidth shaping of microresonator-based frequency combs via dispersion engineering,” Opt. Lett. 39, 3535–3538 (2014).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Liscidini, M.

Lisker, M.

Little, B. E.

Liu, G.

Liu, H.

M. Yang, L. Xu, J. Wang, H. Liu, X. Zhou, G. Li, and L. Zhang, “An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 8300607 (2018).
[Crossref]

Liu, Z.

Luke, K.

Madsen, C. K.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623–1625 (1999).
[Crossref]

Magnusson, R.

M. G. Abdallah, J. A. Buchanan-Vega, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, D. Wawro Weidanz, and R. Magnusson, “Quantification of neuropeptide Y with picomolar sensitivity enabled by guided-mode resonance biosensors,” Sensors 20, 126 (2020).
[Crossref]

R. Magnusson, K. J. Lee, H. Hemmati, Y. H. Ko, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, and D. Wawro Weidanz, “The guided-mode resonance biosensor: principles, technology, and implementation,” Proc. SPIE 10510, 105100G (2018).
[Crossref]

S. Das, S. C. Samudrala, K. J. Lee, M. G. Abdallah, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “SiN-microring-resonator-based optical biosensor for neuropeptide Y detection,” IEEE Photon. Technol. Lett.33, (2021) in press.
[Crossref]

S. Das, S. C. Samudrala, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “Towards the detection of neuropeptide Y at nanomolar level by a SiN microring resonator,” in Proceedings IEEE Photonics Conference, 28September–1 October 2020, paper TuF4.2.

S. Das, S. C. Samudrala, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “Investigation of neuropeptide Y detection by a silicon-nitride microring resonator,” in Proceedings IEEE RAPID Conference, Miramar Beach, Florida, 19–21 August2019, paper WC1.4.

S. Das, S. Samudrala, K. Lee, B. Wenner, J. W. Allen, M. Allen, R. Magnusson, and M. Vasilyev, “Investigation of Si3N4 microring resonator for bio-chemical sensing applications,” in Proceedings Frontiers in Optics, Washington, DC, 16–20 September2018, paper JW3A.98.

Maleki, L.

Mateman, R.

Matsko, A.

McMillan, J.

Metcalf, B.

Miao, H.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Moore, M.

Morandotti, R.

C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Moss, D. J.

C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Nyein, H. Y. Y.

M. Bariya, H. Y. Y. Nyein, and A. Javey, “Wearable sweat sensors,” Nat. Electron. 1, 160–171 (2018).
[Crossref]

Okawachi, Y.

Oxenløwe, L. K.

P. G. Patki, P. Guan, L. Li, T. I. Lakoba, L. K. Oxenløwe, M. Vasilyev, and M. Galili, “Recent progress on optical regeneration of wavelength-division-multiplexed data,” IEEE J. Sel. Top. Quantum Electron. 27, 7700812 (2021).
[Crossref]

Papp, S. B.

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
[Crossref]

Pasquazi, A.

Patki, P. G.

P. G. Patki, P. Guan, L. Li, T. I. Lakoba, L. K. Oxenløwe, M. Vasilyev, and M. Galili, “Recent progress on optical regeneration of wavelength-division-multiplexed data,” IEEE J. Sel. Top. Quantum Electron. 27, 7700812 (2021).
[Crossref]

L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8, 884 (2017).
[Crossref]

Peccianti, M.

Poon, A. W.

J. Wang, Z. Yao, and A. W. Poon, “Silicon-nitride-based integrated optofluidic biochemical sensors using a coupled-resonator optical waveguide,” Front. Mater. 2, 34 (2015).
[Crossref]

Raeiszadehd, M.

F. Ghasemia, E. S. Hosseini, X. Song, D. S. Gottfried, M. Chamanzar, M. Raeiszadehd, R. D. Cummings, A. A. Eftekhar, and A. Adibi, “Multiplexed detection of lectins using integrated glycan-coated microring resonators,” Biosens. Bioelectron. 80, 682–690 (2016).
[Crossref]

Razzari, L.

Reimer, C.

Ren, Z.

Roth, M.

Salter, P.

Samudrala, S.

S. Das, S. Samudrala, K. Lee, B. Wenner, J. W. Allen, M. Allen, R. Magnusson, and M. Vasilyev, “Investigation of Si3N4 microring resonator for bio-chemical sensing applications,” in Proceedings Frontiers in Optics, Washington, DC, 16–20 September2018, paper JW3A.98.

Samudrala, S. C.

S. Das, S. C. Samudrala, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “Investigation of neuropeptide Y detection by a silicon-nitride microring resonator,” in Proceedings IEEE RAPID Conference, Miramar Beach, Florida, 19–21 August2019, paper WC1.4.

S. Das, S. C. Samudrala, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “Towards the detection of neuropeptide Y at nanomolar level by a SiN microring resonator,” in Proceedings IEEE Photonics Conference, 28September–1 October 2020, paper TuF4.2.

S. Das, S. C. Samudrala, K. J. Lee, M. G. Abdallah, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “SiN-microring-resonator-based optical biosensor for neuropeptide Y detection,” IEEE Photon. Technol. Lett.33, (2021) in press.
[Crossref]

Savchenkov, A.

Schliesser, A.

P. Del’ Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Scotti, R. E.

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623–1625 (1999).
[Crossref]

Sipe, J. E.

Song, X.

F. Ghasemia, E. S. Hosseini, X. Song, D. S. Gottfried, M. Chamanzar, M. Raeiszadehd, R. D. Cummings, A. A. Eftekhar, and A. Adibi, “Multiplexed detection of lectins using integrated glycan-coated microring resonators,” Biosens. Bioelectron. 80, 682–690 (2016).
[Crossref]

Sorel, M.

Spring, J.

Srinivasan, K.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Stelmakh, V.

L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8, 884 (2017).
[Crossref]

Strain, M. J.

Sun, P. C.

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self-phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96, 061101 (2010).
[Crossref]

Tan, D. T. H.

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self-phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96, 061101 (2010).
[Crossref]

Thomas-Peter, N.

Tian, Y.

van der Slot, P. J. M.

van Rees, A.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, S. T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, S. T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Vasilyev, M.

P. G. Patki, P. Guan, L. Li, T. I. Lakoba, L. K. Oxenløwe, M. Vasilyev, and M. Galili, “Recent progress on optical regeneration of wavelength-division-multiplexed data,” IEEE J. Sel. Top. Quantum Electron. 27, 7700812 (2021).
[Crossref]

S. Das, B. R. Wenner, J. W. Allen, M. S. Allen, and M. Vasilyev, “Investigation of hybrid silicon-nitride/polymer waveguides for second-harmonic generation,” IEEE Photon. J. 11, 4500509 (2019).
[Crossref]

L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8, 884 (2017).
[Crossref]

S. Das, B. R. Wenner, J. W. Allen, M. S. Allen, and M. Vasilyev, “Robustness of second-harmonic generation in a hybrid SiN/polymer waveguide,” in IEEE Photonics Society’s Research and Applications of Photonics in Defense Conference (RAPID) Conference, Miramar Beach, Florida, 22–24 August2018, paper ThC2.7.

S. Das, B. Wenner, J. Allen, M. Allen, and M. Vasilyev, “Hybrid silicon-nitride/polymer waveguide for nonlinear-optics applications,” in Conference on Lasers & Electro-optics (CLEO), San Jose, California, 13–18 May2018, paper JTu2A.77.

S. Das, S. C. Samudrala, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “Investigation of neuropeptide Y detection by a silicon-nitride microring resonator,” in Proceedings IEEE RAPID Conference, Miramar Beach, Florida, 19–21 August2019, paper WC1.4.

S. Das, S. Samudrala, K. Lee, B. Wenner, J. W. Allen, M. Allen, R. Magnusson, and M. Vasilyev, “Investigation of Si3N4 microring resonator for bio-chemical sensing applications,” in Proceedings Frontiers in Optics, Washington, DC, 16–20 September2018, paper JW3A.98.

S. Das, S. C. Samudrala, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “Towards the detection of neuropeptide Y at nanomolar level by a SiN microring resonator,” in Proceedings IEEE Photonics Conference, 28September–1 October 2020, paper TuF4.2.

S. Das, S. C. Samudrala, K. J. Lee, M. G. Abdallah, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “SiN-microring-resonator-based optical biosensor for neuropeptide Y detection,” IEEE Photon. Technol. Lett.33, (2021) in press.
[Crossref]

Walmsley, I.

Wang, J.

M. Yang, L. Xu, J. Wang, H. Liu, X. Zhou, G. Li, and L. Zhang, “An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 8300607 (2018).
[Crossref]

J. Wang, Z. Yao, and A. W. Poon, “Silicon-nitride-based integrated optofluidic biochemical sensors using a coupled-resonator optical waveguide,” Front. Mater. 2, 34 (2015).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Wawro Weidanz, D.

M. G. Abdallah, J. A. Buchanan-Vega, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, D. Wawro Weidanz, and R. Magnusson, “Quantification of neuropeptide Y with picomolar sensitivity enabled by guided-mode resonance biosensors,” Sensors 20, 126 (2020).
[Crossref]

R. Magnusson, K. J. Lee, H. Hemmati, Y. H. Ko, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, and D. Wawro Weidanz, “The guided-mode resonance biosensor: principles, technology, and implementation,” Proc. SPIE 10510, 105100G (2018).
[Crossref]

Weiner, A. M.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Wenner, B.

S. Das, S. Samudrala, K. Lee, B. Wenner, J. W. Allen, M. Allen, R. Magnusson, and M. Vasilyev, “Investigation of Si3N4 microring resonator for bio-chemical sensing applications,” in Proceedings Frontiers in Optics, Washington, DC, 16–20 September2018, paper JW3A.98.

S. Das, B. Wenner, J. Allen, M. Allen, and M. Vasilyev, “Hybrid silicon-nitride/polymer waveguide for nonlinear-optics applications,” in Conference on Lasers & Electro-optics (CLEO), San Jose, California, 13–18 May2018, paper JTu2A.77.

Wenner, B. R.

M. G. Abdallah, J. A. Buchanan-Vega, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, D. Wawro Weidanz, and R. Magnusson, “Quantification of neuropeptide Y with picomolar sensitivity enabled by guided-mode resonance biosensors,” Sensors 20, 126 (2020).
[Crossref]

S. Das, B. R. Wenner, J. W. Allen, M. S. Allen, and M. Vasilyev, “Investigation of hybrid silicon-nitride/polymer waveguides for second-harmonic generation,” IEEE Photon. J. 11, 4500509 (2019).
[Crossref]

R. Magnusson, K. J. Lee, H. Hemmati, Y. H. Ko, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, and D. Wawro Weidanz, “The guided-mode resonance biosensor: principles, technology, and implementation,” Proc. SPIE 10510, 105100G (2018).
[Crossref]

S. Das, B. R. Wenner, J. W. Allen, M. S. Allen, and M. Vasilyev, “Robustness of second-harmonic generation in a hybrid SiN/polymer waveguide,” in IEEE Photonics Society’s Research and Applications of Photonics in Defense Conference (RAPID) Conference, Miramar Beach, Florida, 22–24 August2018, paper ThC2.7.

S. Das, S. C. Samudrala, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “Investigation of neuropeptide Y detection by a silicon-nitride microring resonator,” in Proceedings IEEE RAPID Conference, Miramar Beach, Florida, 19–21 August2019, paper WC1.4.

S. Das, S. C. Samudrala, K. J. Lee, M. G. Abdallah, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “SiN-microring-resonator-based optical biosensor for neuropeptide Y detection,” IEEE Photon. Technol. Lett.33, (2021) in press.
[Crossref]

S. Das, S. C. Samudrala, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “Towards the detection of neuropeptide Y at nanomolar level by a SiN microring resonator,” in Proceedings IEEE Photonics Conference, 28September–1 October 2020, paper TuF4.2.

Wilken, T.

P. Del’ Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Wong, C.

Xiao, H.

Xie, Z.

Xu, L.

M. Yang, L. Xu, J. Wang, H. Liu, X. Zhou, G. Li, and L. Zhang, “An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 8300607 (2018).
[Crossref]

Yang, J.

Yang, M.

M. Yang, L. Xu, J. Wang, H. Liu, X. Zhou, G. Li, and L. Zhang, “An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 8300607 (2018).
[Crossref]

Yao, Z.

J. Wang, Z. Yao, and A. W. Poon, “Silicon-nitride-based integrated optofluidic biochemical sensors using a coupled-resonator optical waveguide,” Front. Mater. 2, 34 (2015).
[Crossref]

Yu, M.

Zhang, L.

M. Yang, L. Xu, J. Wang, H. Liu, X. Zhou, G. Li, and L. Zhang, “An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 8300607 (2018).
[Crossref]

Zhao, G.

Zhao, T.

Zhou, X.

M. Yang, L. Xu, J. Wang, H. Liu, X. Zhou, G. Li, and L. Zhang, “An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 8300607 (2018).
[Crossref]

Zimmermann, L.

Appl. Phys. Lett. (1)

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self-phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96, 061101 (2010).
[Crossref]

Biosens. Bioelectron. (1)

F. Ghasemia, E. S. Hosseini, X. Song, D. S. Gottfried, M. Chamanzar, M. Raeiszadehd, R. D. Cummings, A. A. Eftekhar, and A. Adibi, “Multiplexed detection of lectins using integrated glycan-coated microring resonators,” Biosens. Bioelectron. 80, 682–690 (2016).
[Crossref]

Front. Mater. (1)

J. Wang, Z. Yao, and A. W. Poon, “Silicon-nitride-based integrated optofluidic biochemical sensors using a coupled-resonator optical waveguide,” Front. Mater. 2, 34 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Yang, L. Xu, J. Wang, H. Liu, X. Zhou, G. Li, and L. Zhang, “An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 8300607 (2018).
[Crossref]

P. G. Patki, P. Guan, L. Li, T. I. Lakoba, L. K. Oxenløwe, M. Vasilyev, and M. Galili, “Recent progress on optical regeneration of wavelength-division-multiplexed data,” IEEE J. Sel. Top. Quantum Electron. 27, 7700812 (2021).
[Crossref]

IEEE Photon. J. (1)

S. Das, B. R. Wenner, J. W. Allen, M. S. Allen, and M. Vasilyev, “Investigation of hybrid silicon-nitride/polymer waveguides for second-harmonic generation,” IEEE Photon. J. 11, 4500509 (2019).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623–1625 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, S. T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Nat. Commun. (1)

L. Li, P. G. Patki, Y. B. Kwon, V. Stelmakh, B. D. Campbell, M. Annamalai, T. I. Lakoba, and M. Vasilyev, “All-optical regenerator of multi-channel signals,” Nat. Commun. 8, 884 (2017).
[Crossref]

Nat. Electron. (1)

M. Bariya, H. Y. Y. Nyein, and A. Javey, “Wearable sweat sensors,” Nat. Electron. 1, 160–171 (2018).
[Crossref]

Nat. Photonics (2)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011).
[Crossref]

Nature (1)

P. Del’ Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (1)

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
[Crossref]

Proc. SPIE (1)

R. Magnusson, K. J. Lee, H. Hemmati, Y. H. Ko, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, and D. Wawro Weidanz, “The guided-mode resonance biosensor: principles, technology, and implementation,” Proc. SPIE 10510, 105100G (2018).
[Crossref]

Sensors (1)

M. G. Abdallah, J. A. Buchanan-Vega, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, S. Gimlin, D. Wawro Weidanz, and R. Magnusson, “Quantification of neuropeptide Y with picomolar sensitivity enabled by guided-mode resonance biosensors,” Sensors 20, 126 (2020).
[Crossref]

Other (6)

S. Das, B. Wenner, J. Allen, M. Allen, and M. Vasilyev, “Hybrid silicon-nitride/polymer waveguide for nonlinear-optics applications,” in Conference on Lasers & Electro-optics (CLEO), San Jose, California, 13–18 May2018, paper JTu2A.77.

S. Das, B. R. Wenner, J. W. Allen, M. S. Allen, and M. Vasilyev, “Robustness of second-harmonic generation in a hybrid SiN/polymer waveguide,” in IEEE Photonics Society’s Research and Applications of Photonics in Defense Conference (RAPID) Conference, Miramar Beach, Florida, 22–24 August2018, paper ThC2.7.

S. Das, S. Samudrala, K. Lee, B. Wenner, J. W. Allen, M. Allen, R. Magnusson, and M. Vasilyev, “Investigation of Si3N4 microring resonator for bio-chemical sensing applications,” in Proceedings Frontiers in Optics, Washington, DC, 16–20 September2018, paper JW3A.98.

S. Das, S. C. Samudrala, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “Investigation of neuropeptide Y detection by a silicon-nitride microring resonator,” in Proceedings IEEE RAPID Conference, Miramar Beach, Florida, 19–21 August2019, paper WC1.4.

S. Das, S. C. Samudrala, K. J. Lee, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “Towards the detection of neuropeptide Y at nanomolar level by a SiN microring resonator,” in Proceedings IEEE Photonics Conference, 28September–1 October 2020, paper TuF4.2.

S. Das, S. C. Samudrala, K. J. Lee, M. G. Abdallah, B. R. Wenner, J. W. Allen, M. S. Allen, R. Magnusson, and M. Vasilyev, “SiN-microring-resonator-based optical biosensor for neuropeptide Y detection,” IEEE Photon. Technol. Lett.33, (2021) in press.
[Crossref]

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Ring resonator with coupling and reflection coefficients defined; (b) its equivalent with a general four-port coupler.
Fig. 2.
Fig. 2. (a) Definition of the four-port coupler’s coefficients; (b) implementation of a dispersive four-port coupler with an AMZI with ${\Delta L}$ path difference.
Fig. 3.
Fig. 3. Comparison between simulation results and experimental data. (a) Modeling results showing transmittance of the microresonator with AMZI coupler (solid black), power coupling coefficient $|{\kappa _{14}}{|^2} = {1 - |}{\rho _{24}}{|^2}$ of the AMZI coupler (dashed blue), and the equivalent dispersion of the AMZI coupler ${-}{D_{\text{compensated}}}$ (dot-dashed red), obtained with $D = - {2000}$ ps/nm/km, $\Delta {\nu _{\text{FSR}}} = {200}\;{\rm GHz}$, $\lambda = {1550}\;{\rm nm}$, ${n_g} \approx {1.6}$, $\varepsilon = {0.1}$, $N = {50}$, and $T = {0.27}$; (b) experimentally measured spectra at the input (gray) and output (black) of a ${{\rm Si}_3}{{\rm N}_4}$ microresonator with AMZI coupler, with $\Delta {\nu _{\text{FSR}}} \approx {180}\;{\rm GHz}$ and $N \approx {50}$. Normalized frequency detuning $\theta$ is defined by Eq. (16).
Fig. 4.
Fig. 4. FSR $\Delta {\nu _{\text{FSR}}}$, normalized by its value near the starting frequency ${\omega _m}$, plotted versus resonance index (index 0 corresponds to the resonance at frequency ${\omega _m}$). Open blue circles, the case of a microresonator with AMZI coupler and (a) $N = {34}$ and $T = {0.13}$ or (b) $N = {61}$ and $T = {0.3}$, with other parameters being the same as those in Fig. 3(a). Filled red dots, the case of a similar microresonator with a simple (not AMZI) coupler.
Fig. 5.
Fig. 5. (a) SEM images of the fabricated microresonator with AMZI coupler; (b) one of the critically coupled resonances of the microring resonator with AMZI coupler having the same parameters as those in Fig. 3(b).
Fig. 6.
Fig. 6. Experimentally measured frequency spacings $\Delta {\nu _{\text{FSR}}}$ for ${{\rm Si}_3}{{\rm N}_4}$ microresonators with (a) a simple (non-AMZI) coupler and (b) an AMZI coupler with $N \approx {30}$. The data are obtained with ASE from C-band (pink squares) and L-band (red triangles) EDFAs.
Fig. 7.
Fig. 7. Effective indices of TE modes of fundamental and SHG waves versus (a) wavelength and (b) slot width.
Fig. 8.
Fig. 8. (a) Cross section of the NPY biosensor in the coupler’s region; (b) experimentally measured microring resonance shifts versus NPY concentration. Symbol size is chosen based on the measurement error.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E i n s i d e = E i n p u t κ 1 ρ e i φ ( ω ) e ε / 2 ,
φ ( ω ) = β ( ω ) L rt
φ ( ω m ) = β ( ω m ) L rt = 2 π m .
β ( ω ) β ( ω m ) + β ( ω m ) × ( ω ω m ) ,
β = d β / d ω = 1 / v g = n g / c ,
n g ( ω ) = n e f f ( ω ) + ω d n e f f ( ω ) d ω ,
β ( ω m + 1 ) L rt β ( ω m ) L rt = β ( ω m ) × ( ω m + 1 ω m ) L rt = 2 π ,
Δ ω F S R = ω m + 1 ω m = 2 π c n g ( ω m ) L rt ,
β ( ω ) = d β ( ω ) d ω = 1 c d n g ( ω ) d ω = 2 π c ω 2 D = λ 2 2 π c D ,
d 2 ψ ( ω ) d ω 2 = d 2 φ ( ω ) d ω 2 = β ( ω ) L rt = 2 π c ω 2 D L rt = λ 2 2 π c D L rt .
ρ 24 ( ω ) = t 2 e i ω δ / c + r 2 = T e i ω δ / c + 1 T , κ 14 ( ω ) = κ 23 ( ω ) = r t ( 1 e i ω δ / c ) = T ( 1 T ) ( 1 e i ω δ / c ) , ρ 13 ( ω ) = r 2 e i ω δ / c + t 2 = ( 1 T ) e i ω δ / c + T ,
ψ ( ω ) = tan 1 [ T sin ( ω δ / c ) T cos ( ω δ / c ) + 1 T ] ,
d 2 ψ ( ω ) d ω 2 = ( n g Δ L c ) 2 T ( 1 T ) ( 1 2 T ) sin γ [ 1 4 T ( 1 T ) sin 2 ( γ / 2 ) ] 2 λ 2 D 2 π Δ L c T 1 2 ( 1 T ) sin 2 ( γ / 2 ) 1 4 T ( 1 T ) sin 2 ( γ / 2 ) ,
N = L r t / Δ L 1 ,
D c o m p e n s a t e d = d 2 ψ ( ω ) d ω 2 2 π c λ 2 L rt = T ( 1 T ) ( 1 2 T ) sin γ [ 1 4 T ( 1 T ) sin 2 ( γ / 2 ) ] 2 ( 2 π λ N ) 2 n g Δ ω F S R × [ 1 + T N 1 2 ( 1 T ) sin 2 ( γ / 2 ) 1 4 T ( 1 T ) sin 2 ( γ / 2 ) ] 1 .
θ = n g Δ L c ( ω ω m ) = 2 π N ( ω ω m Δ ω F S R ) .
φ ( ω ) = φ ( ω m ) + β ( ω m ) ( ω ω m ) L rt + β ( ω m ) ( ω ω m ) 2 2 L rt = 2 π m + n g L rt c ( ω ω m ) λ 2 D L rt 4 π c ( ω ω m ) 2 = 2 π m + N θ λ 2 D Δ ω F S R 8 π 2 n g N 2 θ 2 , γ ( ω ) = φ ( ω ) / N = γ ( ω m ) + θ λ 2 D Δ ω F S R 8 π 2 n g N θ 2 .
T t o t a l = | E o u t p u t E i n p u t | 2 = | ρ 13 e i ( γ + φ ) e ε / 2 1 ρ 24 e i φ e ε / 2 | 2 .

Metrics