Abstract

A design method and corresponding fabrication procedures are proposed for a dual frusto-conical reflector of a downlight luminaire. The profile of the dual frusto-conical reflector consists of two flat-slant reflective surfaces with slightly different slopes. The optimum dual frusto-conical reflector can be obtained with the proposed design method. The finished product of the dual frusto-conical reflector is fabricated by a 3D printer and followed by surface polishing and reflection paint spraying. The measurement results show that luminaires exhibited 70% optimum illuminance confined within an illumination area of ${1.8}\;{{\rm{m}}^2}$, and the optimum illumination intensity is at 252 lux. The optimum efficiency of the proposed luminaire can reach 158 lm/W for normal-white light-emitting diode (LED) and 119 lm/W for warm-white LED, respectively.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Designing an LED luminaire with balance between uniformity of luminance and illuminance for non-Lambertian road surfaces

Tun-Chien Teng, Wen-Shing Sun, and Jhih-Li Lin
Appl. Opt. 56(10) 2604-2613 (2017)

Optical design of an LED motorcycle headlamp with compound reflectors and a toric lens

Wen-Shing Sun, Chuen-Lin Tien, Wei-Chen Lo, and Pu-Yi Chu
Appl. Opt. 54(28) E102-E108 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription