Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Freeform construction method for illumination design by using two orthogonal tangent vectors based on ray mapping

Not Accessible

Your library or personal account may give you access

Abstract

An illumination design problem can be transformed into an optimal mass transport problem based on ray mapping. To construct a freeform surface that best fits the normal field, an efficient numerical method is put forward in this paper. In this method, the normal vectors are constructed by two adjacent orthogonal tangent vectors at each point, and then the normal vectors are substituted into Snell’s law to obtain nonlinear equations describing the surface coordinates. Finally, the continuous and accurate freeform surface can be obtained by solving these nonlinear equations. The simulation results show that the proposed method not only provides lower relative standard deviation, but also significantly reduces the normal deviation more than the traditional one. It can be seen from the comparison results that different numerical integrations of a non-integrable normal field calculated by optimal mass transport can lead to different results, and the proposed method is more feasible than the traditional one, especially in the off-axis case. The simulation results of the illumination effect of some complex patterns also show that the freeform surface constructed by this method can restore the target pattern efficiently and control the normal vector error in a low range.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Ray mapping approach for the efficient design of continuous freeform surfaces

Christoph Bösel and Herbert Gross
Opt. Express 24(13) 14271-14282 (2016)

Constructing optical freeform surfaces using unit tangent vectors of feature data points

Rengmao Wu, Zhenrong Zheng, Haifeng Li, and Xu Liu
J. Opt. Soc. Am. A 28(9) 1880-1888 (2011)

Design of a smooth freeform illumination system for a point light source based on polar-type optimal transport mapping

Xianglong Mao, Songbo Xu, Xinrong Hu, and Yongjun Xie
Appl. Opt. 56(22) 6324-6331 (2017)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.