## Abstract

Full-aperture rapid planar polishing (RPP) has been widely used in optics manufacturing for high-power laser systems. A new, to the best of our knowledge, fuzzy optimization method was presented to assess the precision and productivity of RPP. Unlike the traditional method that can only set one objective, the proposed method can combine different objectives for RPP into one overall indicator. The material removal rate, material removal uniformity, and synthetical fuzzy indicator of RPP (SFIRPP) were selected as the objectives to prove the validity of fuzzy optimization. The rotational speed of optics, polishing pressure, and swing speed were set as the optimized parameters. The orthogonal design was introduced to simplify the operations of experiments. A semi-gamma distribution was used to fit the curve of SFIRPP. The experimental results indicated that the optimized parameters under SFIRPP obtained better manufacturing precision and productivity for flat optics simultaneously. The proposed fuzzy optimization provides the potential for enhancing the optimal parameters of RPP.

© 2021 Optical Society of America

Full Article | PDF Article**More Like This**

Feihu Zhang and Yiren Wang

Appl. Opt. **60**(23) 6910-6917 (2021)

Jing Hou, Mingchen Cao, Hongxiang Wang, Huiying Zhao, Bo Zhong, Zhuangde Jiang, and Yaguo Li

Appl. Opt. **57**(21) 6089-6096 (2018)

Defeng Liao, Lele Ren, Feihu Zhang, Jian Wang, and Qiao Xu

Appl. Opt. **57**(4) 588-593 (2018)