Abstract

The rapid detection of trace gases is of great relevance for various spectroscopy applications. In this regard, the technology of external cavity diode lasers (ECDLs) has firmly established itself due to its excellent properties. Outside of the laboratory environment, however, these still have some restrictions, especially with regard to high acquisition rates for sensitive spectroscopy applications and mode-hop-free tuning. In this article, we present our innovative GaSb-based ECDL concept, in which a resonantly driven microelectromechanical system actuator is used. With this, a defined frequency range can be tuned extremely fast and without mode hops. Results of the characterization and its use for the rapid detection of trace gases are presented.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
GaSb-based digital distributed feedback filter laser diodes for gas sensing applications in the mid-infrared region

Morten Hoppe, Christian Aßmann, Sebastian Schmidtmann, Tobias Milde, Martin Honsberg, Thomas Schanze, and Joachim Sacher
J. Opt. Soc. Am. B 38(8) B1-B8 (2021)

High-power ASE-free fast wavelength-switchable external cavity diode laser

Sota Mine, Kodo Kawase, and Kosuke Murate
Appl. Opt. 60(7) 1953-1957 (2021)

References

  • View by:
  • |
  • |
  • |

  1. B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers – a review,” Opto-Electron. Rev. 16, 347–366 (2008).
    [Crossref]
  2. S. D. Saliba, M. Junker, L. D. Turner, and R. E. Scholten, “Mode stability of external cavity diode lasers,” Appl. Opt. 48, 6692–6700 (2009).
    [Crossref]
  3. B. Henderson, A. Khodabakhsh, M. Metsälä, I. Ventrillard, F. M. Schmidt, D. Romanini, G. A. D. Ritchie, S. te Lintel Hekkert, R. Briot, T. Risby, N. Marczin, F. J. M. Harren, and S. M. Cristescu, “Laser spectroscopy for breath analysis: towards clinical implementation,” Appl. Phys. B 124, 161 (2018).
    [Crossref]
  4. C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits,” Sensors 9, 8230–8262 (2009).
    [Crossref]
  5. K. Namjou, C. B. Roller, and G. McMillen, “Breath-analysis using mid-infrared tunable laser spectroscopy,” in Sensors IEEE, Atlanta, Georgia, 2007, pp. 1337–1340.
  6. L. Lan, J. Chen, X. Zhao, and H. Ghasemifard, “VCSEL-based atmospheric trace gas sensor using first harmonic detection,” IEEE Sens. J. 19, 4923–4931 (2019).
    [Crossref]
  7. K. S. Repasky, A. R. Nehrir, J. T. Hawthorne, G. W. Switzer, and J. L. Carlsten, “Extending the continuous tuning range of an external-cavity diode laser,” Appl. Opt. 45, 9013–9020 (2006.
    [Crossref]
  8. G. W. Truong, K. Douglass, S. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7, 532–534 (2013).
    [Crossref]
  9. P. W. Hawkes, Advances in Imaging and Electron Physics: Optics of Charged Particle Analyzers (Academic, 2011), pp. 128–133.
  10. M. Hoppe, H. Rohling, S. Schmidtmann, M. Honsberg, H. Tatenguem, J. Grahmann, T. Milde, T. Schanze, and J. R. Sacher, “Wide and fast mode-hop free MEMS tunable ECDL concept and realization in the NIR and MIR spectral regime,” Proc. SPIE 11293, 112930C (2020).
    [Crossref]
  11. A. Jimenez, T. Milde, N. Staacke, C. Assmann, J. O’Gorman, and J. Sacher, “Narrow-line diode laser packaging and integration in the NIR and MIR spectral range,” Proc. SPIE 10085, 1008505 (2017).
    [Crossref]
  12. H. Schenk, J. Grahmann, T. Sandner, M. Wagner, U. Dauderstädt, and J.-U. Schmidt, “Micro mirrors for high-speed laser deflection and patterning,” Physics Procedia 56, 7–18 (2014).
    [Crossref]
  13. “HITRAN online,” https://hitran.org/ .

2020 (1)

M. Hoppe, H. Rohling, S. Schmidtmann, M. Honsberg, H. Tatenguem, J. Grahmann, T. Milde, T. Schanze, and J. R. Sacher, “Wide and fast mode-hop free MEMS tunable ECDL concept and realization in the NIR and MIR spectral regime,” Proc. SPIE 11293, 112930C (2020).
[Crossref]

2019 (1)

L. Lan, J. Chen, X. Zhao, and H. Ghasemifard, “VCSEL-based atmospheric trace gas sensor using first harmonic detection,” IEEE Sens. J. 19, 4923–4931 (2019).
[Crossref]

2018 (1)

B. Henderson, A. Khodabakhsh, M. Metsälä, I. Ventrillard, F. M. Schmidt, D. Romanini, G. A. D. Ritchie, S. te Lintel Hekkert, R. Briot, T. Risby, N. Marczin, F. J. M. Harren, and S. M. Cristescu, “Laser spectroscopy for breath analysis: towards clinical implementation,” Appl. Phys. B 124, 161 (2018).
[Crossref]

2017 (1)

A. Jimenez, T. Milde, N. Staacke, C. Assmann, J. O’Gorman, and J. Sacher, “Narrow-line diode laser packaging and integration in the NIR and MIR spectral range,” Proc. SPIE 10085, 1008505 (2017).
[Crossref]

2014 (1)

H. Schenk, J. Grahmann, T. Sandner, M. Wagner, U. Dauderstädt, and J.-U. Schmidt, “Micro mirrors for high-speed laser deflection and patterning,” Physics Procedia 56, 7–18 (2014).
[Crossref]

2013 (1)

G. W. Truong, K. Douglass, S. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7, 532–534 (2013).
[Crossref]

2009 (2)

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits,” Sensors 9, 8230–8262 (2009).
[Crossref]

S. D. Saliba, M. Junker, L. D. Turner, and R. E. Scholten, “Mode stability of external cavity diode lasers,” Appl. Opt. 48, 6692–6700 (2009).
[Crossref]

2008 (1)

B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers – a review,” Opto-Electron. Rev. 16, 347–366 (2008).
[Crossref]

2006 (1)

Assmann, C.

A. Jimenez, T. Milde, N. Staacke, C. Assmann, J. O’Gorman, and J. Sacher, “Narrow-line diode laser packaging and integration in the NIR and MIR spectral range,” Proc. SPIE 10085, 1008505 (2017).
[Crossref]

Briot, R.

B. Henderson, A. Khodabakhsh, M. Metsälä, I. Ventrillard, F. M. Schmidt, D. Romanini, G. A. D. Ritchie, S. te Lintel Hekkert, R. Briot, T. Risby, N. Marczin, F. J. M. Harren, and S. M. Cristescu, “Laser spectroscopy for breath analysis: towards clinical implementation,” Appl. Phys. B 124, 161 (2018).
[Crossref]

Carlsten, J. L.

Chen, J.

L. Lan, J. Chen, X. Zhao, and H. Ghasemifard, “VCSEL-based atmospheric trace gas sensor using first harmonic detection,” IEEE Sens. J. 19, 4923–4931 (2019).
[Crossref]

Cristescu, S. M.

B. Henderson, A. Khodabakhsh, M. Metsälä, I. Ventrillard, F. M. Schmidt, D. Romanini, G. A. D. Ritchie, S. te Lintel Hekkert, R. Briot, T. Risby, N. Marczin, F. J. M. Harren, and S. M. Cristescu, “Laser spectroscopy for breath analysis: towards clinical implementation,” Appl. Phys. B 124, 161 (2018).
[Crossref]

Dauderstädt, U.

H. Schenk, J. Grahmann, T. Sandner, M. Wagner, U. Dauderstädt, and J.-U. Schmidt, “Micro mirrors for high-speed laser deflection and patterning,” Physics Procedia 56, 7–18 (2014).
[Crossref]

Douglass, K.

G. W. Truong, K. Douglass, S. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7, 532–534 (2013).
[Crossref]

Ghasemifard, H.

L. Lan, J. Chen, X. Zhao, and H. Ghasemifard, “VCSEL-based atmospheric trace gas sensor using first harmonic detection,” IEEE Sens. J. 19, 4923–4931 (2019).
[Crossref]

Grahmann, J.

M. Hoppe, H. Rohling, S. Schmidtmann, M. Honsberg, H. Tatenguem, J. Grahmann, T. Milde, T. Schanze, and J. R. Sacher, “Wide and fast mode-hop free MEMS tunable ECDL concept and realization in the NIR and MIR spectral regime,” Proc. SPIE 11293, 112930C (2020).
[Crossref]

H. Schenk, J. Grahmann, T. Sandner, M. Wagner, U. Dauderstädt, and J.-U. Schmidt, “Micro mirrors for high-speed laser deflection and patterning,” Physics Procedia 56, 7–18 (2014).
[Crossref]

Harren, F. J. M.

B. Henderson, A. Khodabakhsh, M. Metsälä, I. Ventrillard, F. M. Schmidt, D. Romanini, G. A. D. Ritchie, S. te Lintel Hekkert, R. Briot, T. Risby, N. Marczin, F. J. M. Harren, and S. M. Cristescu, “Laser spectroscopy for breath analysis: towards clinical implementation,” Appl. Phys. B 124, 161 (2018).
[Crossref]

Hawkes, P. W.

P. W. Hawkes, Advances in Imaging and Electron Physics: Optics of Charged Particle Analyzers (Academic, 2011), pp. 128–133.

Hawthorne, J. T.

Henderson, B.

B. Henderson, A. Khodabakhsh, M. Metsälä, I. Ventrillard, F. M. Schmidt, D. Romanini, G. A. D. Ritchie, S. te Lintel Hekkert, R. Briot, T. Risby, N. Marczin, F. J. M. Harren, and S. M. Cristescu, “Laser spectroscopy for breath analysis: towards clinical implementation,” Appl. Phys. B 124, 161 (2018).
[Crossref]

Hodges, J. T.

G. W. Truong, K. Douglass, S. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7, 532–534 (2013).
[Crossref]

Honsberg, M.

M. Hoppe, H. Rohling, S. Schmidtmann, M. Honsberg, H. Tatenguem, J. Grahmann, T. Milde, T. Schanze, and J. R. Sacher, “Wide and fast mode-hop free MEMS tunable ECDL concept and realization in the NIR and MIR spectral regime,” Proc. SPIE 11293, 112930C (2020).
[Crossref]

Hoppe, M.

M. Hoppe, H. Rohling, S. Schmidtmann, M. Honsberg, H. Tatenguem, J. Grahmann, T. Milde, T. Schanze, and J. R. Sacher, “Wide and fast mode-hop free MEMS tunable ECDL concept and realization in the NIR and MIR spectral regime,” Proc. SPIE 11293, 112930C (2020).
[Crossref]

Jimenez, A.

A. Jimenez, T. Milde, N. Staacke, C. Assmann, J. O’Gorman, and J. Sacher, “Narrow-line diode laser packaging and integration in the NIR and MIR spectral range,” Proc. SPIE 10085, 1008505 (2017).
[Crossref]

Junker, M.

Khodabakhsh, A.

B. Henderson, A. Khodabakhsh, M. Metsälä, I. Ventrillard, F. M. Schmidt, D. Romanini, G. A. D. Ritchie, S. te Lintel Hekkert, R. Briot, T. Risby, N. Marczin, F. J. M. Harren, and S. M. Cristescu, “Laser spectroscopy for breath analysis: towards clinical implementation,” Appl. Phys. B 124, 161 (2018).
[Crossref]

Lan, L.

L. Lan, J. Chen, X. Zhao, and H. Ghasemifard, “VCSEL-based atmospheric trace gas sensor using first harmonic detection,” IEEE Sens. J. 19, 4923–4931 (2019).
[Crossref]

Long, D. A.

G. W. Truong, K. Douglass, S. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7, 532–534 (2013).
[Crossref]

Marczin, N.

B. Henderson, A. Khodabakhsh, M. Metsälä, I. Ventrillard, F. M. Schmidt, D. Romanini, G. A. D. Ritchie, S. te Lintel Hekkert, R. Briot, T. Risby, N. Marczin, F. J. M. Harren, and S. M. Cristescu, “Laser spectroscopy for breath analysis: towards clinical implementation,” Appl. Phys. B 124, 161 (2018).
[Crossref]

Maxwell, S.

G. W. Truong, K. Douglass, S. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7, 532–534 (2013).
[Crossref]

McMillen, G.

K. Namjou, C. B. Roller, and G. McMillen, “Breath-analysis using mid-infrared tunable laser spectroscopy,” in Sensors IEEE, Atlanta, Georgia, 2007, pp. 1337–1340.

Metsälä, M.

B. Henderson, A. Khodabakhsh, M. Metsälä, I. Ventrillard, F. M. Schmidt, D. Romanini, G. A. D. Ritchie, S. te Lintel Hekkert, R. Briot, T. Risby, N. Marczin, F. J. M. Harren, and S. M. Cristescu, “Laser spectroscopy for breath analysis: towards clinical implementation,” Appl. Phys. B 124, 161 (2018).
[Crossref]

Milde, T.

M. Hoppe, H. Rohling, S. Schmidtmann, M. Honsberg, H. Tatenguem, J. Grahmann, T. Milde, T. Schanze, and J. R. Sacher, “Wide and fast mode-hop free MEMS tunable ECDL concept and realization in the NIR and MIR spectral regime,” Proc. SPIE 11293, 112930C (2020).
[Crossref]

A. Jimenez, T. Milde, N. Staacke, C. Assmann, J. O’Gorman, and J. Sacher, “Narrow-line diode laser packaging and integration in the NIR and MIR spectral range,” Proc. SPIE 10085, 1008505 (2017).
[Crossref]

Mroziewicz, B.

B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers – a review,” Opto-Electron. Rev. 16, 347–366 (2008).
[Crossref]

Namjou, K.

K. Namjou, C. B. Roller, and G. McMillen, “Breath-analysis using mid-infrared tunable laser spectroscopy,” in Sensors IEEE, Atlanta, Georgia, 2007, pp. 1337–1340.

Nehrir, A. R.

O’Gorman, J.

A. Jimenez, T. Milde, N. Staacke, C. Assmann, J. O’Gorman, and J. Sacher, “Narrow-line diode laser packaging and integration in the NIR and MIR spectral range,” Proc. SPIE 10085, 1008505 (2017).
[Crossref]

Plusquellic, D. F.

G. W. Truong, K. Douglass, S. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7, 532–534 (2013).
[Crossref]

Repasky, K. S.

Risby, T.

B. Henderson, A. Khodabakhsh, M. Metsälä, I. Ventrillard, F. M. Schmidt, D. Romanini, G. A. D. Ritchie, S. te Lintel Hekkert, R. Briot, T. Risby, N. Marczin, F. J. M. Harren, and S. M. Cristescu, “Laser spectroscopy for breath analysis: towards clinical implementation,” Appl. Phys. B 124, 161 (2018).
[Crossref]

Ritchie, G. A. D.

B. Henderson, A. Khodabakhsh, M. Metsälä, I. Ventrillard, F. M. Schmidt, D. Romanini, G. A. D. Ritchie, S. te Lintel Hekkert, R. Briot, T. Risby, N. Marczin, F. J. M. Harren, and S. M. Cristescu, “Laser spectroscopy for breath analysis: towards clinical implementation,” Appl. Phys. B 124, 161 (2018).
[Crossref]

Rohling, H.

M. Hoppe, H. Rohling, S. Schmidtmann, M. Honsberg, H. Tatenguem, J. Grahmann, T. Milde, T. Schanze, and J. R. Sacher, “Wide and fast mode-hop free MEMS tunable ECDL concept and realization in the NIR and MIR spectral regime,” Proc. SPIE 11293, 112930C (2020).
[Crossref]

Roller, C. B.

K. Namjou, C. B. Roller, and G. McMillen, “Breath-analysis using mid-infrared tunable laser spectroscopy,” in Sensors IEEE, Atlanta, Georgia, 2007, pp. 1337–1340.

Romanini, D.

B. Henderson, A. Khodabakhsh, M. Metsälä, I. Ventrillard, F. M. Schmidt, D. Romanini, G. A. D. Ritchie, S. te Lintel Hekkert, R. Briot, T. Risby, N. Marczin, F. J. M. Harren, and S. M. Cristescu, “Laser spectroscopy for breath analysis: towards clinical implementation,” Appl. Phys. B 124, 161 (2018).
[Crossref]

Sacher, J.

A. Jimenez, T. Milde, N. Staacke, C. Assmann, J. O’Gorman, and J. Sacher, “Narrow-line diode laser packaging and integration in the NIR and MIR spectral range,” Proc. SPIE 10085, 1008505 (2017).
[Crossref]

Sacher, J. R.

M. Hoppe, H. Rohling, S. Schmidtmann, M. Honsberg, H. Tatenguem, J. Grahmann, T. Milde, T. Schanze, and J. R. Sacher, “Wide and fast mode-hop free MEMS tunable ECDL concept and realization in the NIR and MIR spectral regime,” Proc. SPIE 11293, 112930C (2020).
[Crossref]

Sahay, P.

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits,” Sensors 9, 8230–8262 (2009).
[Crossref]

Saliba, S. D.

Sandner, T.

H. Schenk, J. Grahmann, T. Sandner, M. Wagner, U. Dauderstädt, and J.-U. Schmidt, “Micro mirrors for high-speed laser deflection and patterning,” Physics Procedia 56, 7–18 (2014).
[Crossref]

Schanze, T.

M. Hoppe, H. Rohling, S. Schmidtmann, M. Honsberg, H. Tatenguem, J. Grahmann, T. Milde, T. Schanze, and J. R. Sacher, “Wide and fast mode-hop free MEMS tunable ECDL concept and realization in the NIR and MIR spectral regime,” Proc. SPIE 11293, 112930C (2020).
[Crossref]

Schenk, H.

H. Schenk, J. Grahmann, T. Sandner, M. Wagner, U. Dauderstädt, and J.-U. Schmidt, “Micro mirrors for high-speed laser deflection and patterning,” Physics Procedia 56, 7–18 (2014).
[Crossref]

Schmidt, F. M.

B. Henderson, A. Khodabakhsh, M. Metsälä, I. Ventrillard, F. M. Schmidt, D. Romanini, G. A. D. Ritchie, S. te Lintel Hekkert, R. Briot, T. Risby, N. Marczin, F. J. M. Harren, and S. M. Cristescu, “Laser spectroscopy for breath analysis: towards clinical implementation,” Appl. Phys. B 124, 161 (2018).
[Crossref]

Schmidt, J.-U.

H. Schenk, J. Grahmann, T. Sandner, M. Wagner, U. Dauderstädt, and J.-U. Schmidt, “Micro mirrors for high-speed laser deflection and patterning,” Physics Procedia 56, 7–18 (2014).
[Crossref]

Schmidtmann, S.

M. Hoppe, H. Rohling, S. Schmidtmann, M. Honsberg, H. Tatenguem, J. Grahmann, T. Milde, T. Schanze, and J. R. Sacher, “Wide and fast mode-hop free MEMS tunable ECDL concept and realization in the NIR and MIR spectral regime,” Proc. SPIE 11293, 112930C (2020).
[Crossref]

Scholten, R. E.

Staacke, N.

A. Jimenez, T. Milde, N. Staacke, C. Assmann, J. O’Gorman, and J. Sacher, “Narrow-line diode laser packaging and integration in the NIR and MIR spectral range,” Proc. SPIE 10085, 1008505 (2017).
[Crossref]

Switzer, G. W.

Tatenguem, H.

M. Hoppe, H. Rohling, S. Schmidtmann, M. Honsberg, H. Tatenguem, J. Grahmann, T. Milde, T. Schanze, and J. R. Sacher, “Wide and fast mode-hop free MEMS tunable ECDL concept and realization in the NIR and MIR spectral regime,” Proc. SPIE 11293, 112930C (2020).
[Crossref]

te Lintel Hekkert, S.

B. Henderson, A. Khodabakhsh, M. Metsälä, I. Ventrillard, F. M. Schmidt, D. Romanini, G. A. D. Ritchie, S. te Lintel Hekkert, R. Briot, T. Risby, N. Marczin, F. J. M. Harren, and S. M. Cristescu, “Laser spectroscopy for breath analysis: towards clinical implementation,” Appl. Phys. B 124, 161 (2018).
[Crossref]

Truong, G. W.

G. W. Truong, K. Douglass, S. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7, 532–534 (2013).
[Crossref]

Turner, L. D.

van Zee, R. D.

G. W. Truong, K. Douglass, S. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7, 532–534 (2013).
[Crossref]

Ventrillard, I.

B. Henderson, A. Khodabakhsh, M. Metsälä, I. Ventrillard, F. M. Schmidt, D. Romanini, G. A. D. Ritchie, S. te Lintel Hekkert, R. Briot, T. Risby, N. Marczin, F. J. M. Harren, and S. M. Cristescu, “Laser spectroscopy for breath analysis: towards clinical implementation,” Appl. Phys. B 124, 161 (2018).
[Crossref]

Wagner, M.

H. Schenk, J. Grahmann, T. Sandner, M. Wagner, U. Dauderstädt, and J.-U. Schmidt, “Micro mirrors for high-speed laser deflection and patterning,” Physics Procedia 56, 7–18 (2014).
[Crossref]

Wang, C.

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits,” Sensors 9, 8230–8262 (2009).
[Crossref]

Zhao, X.

L. Lan, J. Chen, X. Zhao, and H. Ghasemifard, “VCSEL-based atmospheric trace gas sensor using first harmonic detection,” IEEE Sens. J. 19, 4923–4931 (2019).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

B. Henderson, A. Khodabakhsh, M. Metsälä, I. Ventrillard, F. M. Schmidt, D. Romanini, G. A. D. Ritchie, S. te Lintel Hekkert, R. Briot, T. Risby, N. Marczin, F. J. M. Harren, and S. M. Cristescu, “Laser spectroscopy for breath analysis: towards clinical implementation,” Appl. Phys. B 124, 161 (2018).
[Crossref]

IEEE Sens. J. (1)

L. Lan, J. Chen, X. Zhao, and H. Ghasemifard, “VCSEL-based atmospheric trace gas sensor using first harmonic detection,” IEEE Sens. J. 19, 4923–4931 (2019).
[Crossref]

Nat. Photonics (1)

G. W. Truong, K. Douglass, S. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7, 532–534 (2013).
[Crossref]

Opto-Electron. Rev. (1)

B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers – a review,” Opto-Electron. Rev. 16, 347–366 (2008).
[Crossref]

Physics Procedia (1)

H. Schenk, J. Grahmann, T. Sandner, M. Wagner, U. Dauderstädt, and J.-U. Schmidt, “Micro mirrors for high-speed laser deflection and patterning,” Physics Procedia 56, 7–18 (2014).
[Crossref]

Proc. SPIE (2)

M. Hoppe, H. Rohling, S. Schmidtmann, M. Honsberg, H. Tatenguem, J. Grahmann, T. Milde, T. Schanze, and J. R. Sacher, “Wide and fast mode-hop free MEMS tunable ECDL concept and realization in the NIR and MIR spectral regime,” Proc. SPIE 11293, 112930C (2020).
[Crossref]

A. Jimenez, T. Milde, N. Staacke, C. Assmann, J. O’Gorman, and J. Sacher, “Narrow-line diode laser packaging and integration in the NIR and MIR spectral range,” Proc. SPIE 10085, 1008505 (2017).
[Crossref]

Sensors (1)

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits,” Sensors 9, 8230–8262 (2009).
[Crossref]

Other (3)

K. Namjou, C. B. Roller, and G. McMillen, “Breath-analysis using mid-infrared tunable laser spectroscopy,” in Sensors IEEE, Atlanta, Georgia, 2007, pp. 1337–1340.

P. W. Hawkes, Advances in Imaging and Electron Physics: Optics of Charged Particle Analyzers (Academic, 2011), pp. 128–133.

“HITRAN online,” https://hitran.org/ .

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. View of the gain chip with curved waveguide. Key parameters are an extremely low AR coating, a front facet reflectivity of 5%, and a cavity length of 1800 µm.
Fig. 2.
Fig. 2. ECDL concept based on a resonantly driven MEMS actuator for extremely fast and mode-hop-free tuning of a defined frequency range. The reflection grating can be positioned via the motor to set the wavelength of interest. Subsequently, the applied voltage on the MEMS actuator with a scan frequency in the kilohertz range enables the change of the incidence angle with a simultaneous change of the cavity length.
Fig. 3.
Fig. 3. Measured PI curve at different wavelengths. At the central wavelength, a maximum power of 7.1 mW at 275 mA can be achieved. The threshold current is 66 mA.
Fig. 4.
Fig. 4. Measured optical spectrum with a resolution of 0.01 nm as a function of wavelength. For the central wavelength, no SMSR of 53 dB can be achieved. The entire gain range of the laser diode can be used by means of the external cavity concept.
Fig. 5.
Fig. 5. Detected photodiode current during continuous tuning of the motor, here plotted together with the SMSR as a function of wavelength. Overall, the operation wavelength can be adjusted over a range of 110 nm.
Fig. 6.
Fig. 6. RIN measurement for the characterization of the MEMS actuator. The laser beam is detected via an ext-InGaAs photodiode and read out via a digitizer.
Fig. 7.
Fig. 7. RIN measurement for the resonant frequency of the MEMS actuator. The resonant frequency could be clearly determined at 2.187 kHz.
Fig. 8.
Fig. 8. Plot of the time domain of the etalon with an FSR of 4.2 GHz. By increasing the voltage on the MEMS actuator, more peaks appear in the display range until mode hops occur. This allows the mode-hop-free frequency range to be determined.
Fig. 9.
Fig. 9. Detected absorption signal of ${{\rm{CO}}_2}$ at 2015.09 nm. For the measurement, a 1 m long gas tube was filled with the corresponding gas and a pressure of 100 mbar was set. By means of the MEMS actuator, a range of 22 GHz could be tuned extremely fast without mode hops.
Fig. 10.
Fig. 10. Evaluated absorption signal of ${{\rm{CO}}_2}$ compared with simulated data from HITRAN [13]. ${{\rm{CO}}_2}$ was successfully detected with sampling rates in the kilohertz range.

Tables (2)

Tables Icon

Table 1. Mode-Hop-Free Frequency Range at 1.377 kHz

Tables Icon

Table 2. Mode-Hop-Free Frequency Range at 4.947 kHz

Metrics