Abstract

Computational ghost imaging (CGI) allows us to reconstruct images under a low signal-to-noise-ratio condition. However, CGI cannot retrieve phase information; it is unsuitable for observation of transparent objects such as living cells. A phase imaging method with CGI architecture is proposed. The proposed method realizes phase imaging with a simple optical setup by introducing pupil modulation differential phase contrast (PMDPC) to CGI. In PMDPC, phase information can be obtained from intensity distributions, which have phase gradient information, and its optical setup is similar to that of CGI. Therefore, the two methods are highly compatible, and the introduction of PMDPC to CGI can be easily achieved. Numerical simulation and an optical experiment demonstrated the feasibility of the proposed method.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Transport-of-intensity computational ghost imaging

Koshi Komuro, Yuya Yamazaki, and Takanori Nomura
Appl. Opt. 57(16) 4451-4456 (2018)

Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast

Hangwen Lu, Jaebum Chung, Xiaoze Ou, and Changhuei Yang
Opt. Express 24(22) 25345-25361 (2016)

Deep ghost phase imaging

Koshi Komuro, Takanori Nomura, and George Barbastathis
Appl. Opt. 59(11) 3376-3382 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics