Abstract

Underwater localization using visible-light communications is proposed based on neural networks (NNs) estimation of received signal strength (RSS). Our proposed work compromises two steps: data collection and NN training. First, data are collected with the aid of Zemax OpticStudio Monte Carlo ray tracing software, where we configure 40,000 receivers in a $100\;{\rm m} \times 100\;{\rm m}$ area in order to measure the channel gain for each detector in seawater. The channel gains represent the input data set to the NN, while the output of the NN is the coordinates of each detector based on the RSS intensity technique. Next, an NN system is built and trained with the aid of Orange data mining software. Several trials for NN implementations are performed, and the best training algorithms, activation functions, and number of neurons are determined. In addition, several performance measures are considered in order to evaluate the robustness of the proposed network. Specifically, we evaluate the following parameters: classification accuracy (CA), area under the curve (AUC), training time, testing time, F1, precision, recall, logloss, and specificity. The corresponding measures are as follows: 99.1% for AUC and 98.7% for CA, F1, precision, and recall. Further, the performance results of logloss and specificity are 7.3% and 99.3% respectively.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system

Nan Chi, Yiheng Zhao, Meng Shi, Peng Zou, and Xingyu Lu
Opt. Express 26(20) 26700-26712 (2018)

Two tributaries heterogeneous neural network based channel emulator for underwater visible light communication systems

Yiheng Zhao, Peng Zou, Weixiang Yu, and Nan Chi
Opt. Express 27(16) 22532-22541 (2019)

Improving the visible light communication localization system using Kalman filtering with averaging

Eman Shawky, Mohamed El-Shimy, Amr Mokhtar, El-Sayed A. El-Badawy, and Hossam M. H. Shalaby
J. Opt. Soc. Am. B 37(11) A130-A138 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (15)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription