Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Active alignment of complex perturbed pupil-offset off-axis telescopes using the extension of nodal aberration theory

Not Accessible

Your library or personal account may give you access

Abstract

This paper presents an optical alignment strategy for complex perturbed pupil-offset off-axis reflective telescopes, based on the extension of nodal aberration theory (NAT). First, the direct expansion of the wave aberration function in the vector form for perturbed off-axis systems is given, which is especially convenient for the expansion of the corresponding higher-order terms. The inherent vector relationships between the contributions generated by the aberrations of the on-axis parent systems through pupil transformation are disclosed in detail, which is helpful to understand the aberration behavior of off-axis systems. Then, according to the inherent vector relationships, an analytical alignment model based on NAT for complex cases of perturbed off-axis telescopes is established. It can quantitatively separate the effects of misalignments and surface figure errors from the total aberration fields. The alignment model is solved by using particle swarm optimization algorithm. Then, an optical alignment example of the off-axis three-mirror anastigmatic telescope with misalignments and complex surface figure errors based on the proposed method is demonstrated. After correction, the perturbed telescope can be nearly restored to the nominal states. Finally, Monte Carlo simulations are carried out to show the effectiveness and accuracy of the proposed method.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Active optical alignment of off-axis telescopes based on nodal aberration theory

Xiaobin Zhang, Dong Zhang, Shuyan Xu, and Hongcai Ma
Opt. Express 24(23) 26392-26413 (2016)

Alignment algorithm of nonsymmetric off-axis reflective astronomical telescopes based on the modified third-order nodal aberration theory

Jinxin Wang, Xu He, Jing Luo, Xiaohui Zhang, and Tianxiao Xu
Opt. Express 30(8) 13159-13183 (2022)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved