Abstract

Laser marking of various materials is commonly used nowadays in commercial products. In the past two decades, ${{\rm{CO}}_2}$ lasers have been used extensively to mark insulators such as glass and wood during industrial production. Usually, a system of mirrors is used during a marking procedure. Although a laser beam can be characterized accurately using well-known methods, it is desirable to identify where the focal point is after reflecting on the scanning mirrors. The positioning of a motorized stage with a knife-edge and a sensing device to characterize a beam after reflecting through a mirror scanner system is impractical due to limited space. The method described here to determine the focal point accurately requires using only a large numerical aperture fiber connected to a motorized stage. In this paper, we investigate how spectroscopy of typical emission lines can be used to identify the position of the focal point in real time during laser marking procedures.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Step-by-step guide to 3D print motorized rotation mounts for optical applications

Daniel P. G. Nilsson, Tobias Dahlberg, and Magnus Andersson
Appl. Opt. 60(13) 3764-3771 (2021)

Fast full-field modulation transfer function analysis for photographic lens quality assessment

Bernard Delley and Frans van den Bergh
Appl. Opt. 60(8) 2197-2206 (2021)

Application of a temporal synchronization device for the study of laser-induced plasma spectroscopy in a multi-pulse regime

Luis V. Ponce Cabrera, T. Flores Reyes, Yohan Perez Moret, and Fernando C. Alvira
Appl. Opt. 60(6) 1574-1577 (2021)

References

  • View by:

  1. L. May, “From textiles to meat: CO2 lasers leave their mark,” in Euro Photonics, Munich, Germany, June2019.
  2. J. Skruibis, O. Balachninaite, S. Butkus, V. Vicaitis, and V. Sirutkaitis, “Multiple-pulse laser-induced breakdown spectroscopy for monitoring the femtosecond laser micromachining process of glass,” Opt. Laser Technol. 111, 295–302 (2019).
    [Crossref]
  3. M. A. C. de Araujo, R. Silva, E. de Lima, D. P. Pereira, and P. C. de Oliveira, “Measurements of G laser beam radius using the knife-edge technique: improvement on data-analysis,” Appl. Opt. 48, 393–396 (2009).
    [Crossref]
  4. Y. Li, D. Liu, F. Qi, H. Yang, and Q. Gong, “Femtosecond laser micromachining and microfabrication in transparent materials,” Proc. SPIE 6825, 68250K (2008).
    [Crossref]
  5. S. Darvishi, T. Cubaud, and J. P. Longtin, “Ultrafast laser machining of tapered microchannels in glass and PDMS," Opt. Laser Eng. 50, 210–214 (2012).
    [Crossref]
  6. L. Lévesque and V. Jdanov, “CO2 laser ablation of bent optical fibers for sensing applications,” J. Opt. 13, 015603 (2011).
    [Crossref]
  7. L. Lévesque and V. Jdanov, “Optical fiber cleaved at an angle by CO2 laser ablation: application to micromachining,” Opt. Laser Technol. 42, 1080–1083 (2010).
    [Crossref]
  8. L. Rihakova and H. Chmelickova, “Laser micromachining of glass, silicon and ceramics,” Adv. Mater. Sci. Eng. 2015, 584952 (2015).
    [Crossref]
  9. P. S. Mihalic, B. Toley, J. Houghtaling, T. Liang, P. Yager, and E. Fu, “CO2 laser cutting and ablative etching for the fabrication of paper-based devices,” J. Micromech. Microeng. 23, 067003 (2013).
    [Crossref]
  10. L. Lévesque, “Divergence of far-infrared laser beam and collimation for Galilean and Keplerian system designs,” Opt. Laser Technol. 41, 557–561 (2009).
    [Crossref]
  11. A. A. Tovar and L. W. Casperon, “Generalized beam matrices, iv optical system design,” J. Opt. Soc. Am. A 14, 882–893 (1997).
    [Crossref]
  12. A. E. Siegman, Lasers (University Science, 1986), pp. 581–585.
  13. A. Yariv, Quantum Electronics, 2nd ed. (Wiley, 1975), pp. 99–106.
  14. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), p. 9497.
  15. Gaussian beam Optics, “CVI Melles Griot 2009 technical guide,” http://www.cvimellesgriot.com .
  16. P. A. Bélanger, “Beam propagation and the ABCD ray matrices,” Opt. Lett. 16, 196–198 (1991).
    [Crossref]
  17. https://ii-vi.com/laser-resources/ .
  18. https://physics.nist.gov/PhysRefData/ASD/lines_form.html .
  19. R. G. H. Greer, D. P. Murtagh, I. C. McDade, and E. J. Llewellyn, “Rocket photometry and the lower thermospheric oxygen night glow,” Philos. Trans. R. Soc. London, Ser. A 323, 579–595 (1987).
    [Crossref]
  20. W. He, K. Wu, Y. Feng, D. Fu, Z. Chen, and F. Li, “The radiative transfer characteristics of the O2 infrared atmospheric band in limb-viewing geometry,” Remote Sens. 11, 2702 (2019).
    [Crossref]

2019 (2)

J. Skruibis, O. Balachninaite, S. Butkus, V. Vicaitis, and V. Sirutkaitis, “Multiple-pulse laser-induced breakdown spectroscopy for monitoring the femtosecond laser micromachining process of glass,” Opt. Laser Technol. 111, 295–302 (2019).
[Crossref]

W. He, K. Wu, Y. Feng, D. Fu, Z. Chen, and F. Li, “The radiative transfer characteristics of the O2 infrared atmospheric band in limb-viewing geometry,” Remote Sens. 11, 2702 (2019).
[Crossref]

2015 (1)

L. Rihakova and H. Chmelickova, “Laser micromachining of glass, silicon and ceramics,” Adv. Mater. Sci. Eng. 2015, 584952 (2015).
[Crossref]

2013 (1)

P. S. Mihalic, B. Toley, J. Houghtaling, T. Liang, P. Yager, and E. Fu, “CO2 laser cutting and ablative etching for the fabrication of paper-based devices,” J. Micromech. Microeng. 23, 067003 (2013).
[Crossref]

2012 (1)

S. Darvishi, T. Cubaud, and J. P. Longtin, “Ultrafast laser machining of tapered microchannels in glass and PDMS," Opt. Laser Eng. 50, 210–214 (2012).
[Crossref]

2011 (1)

L. Lévesque and V. Jdanov, “CO2 laser ablation of bent optical fibers for sensing applications,” J. Opt. 13, 015603 (2011).
[Crossref]

2010 (1)

L. Lévesque and V. Jdanov, “Optical fiber cleaved at an angle by CO2 laser ablation: application to micromachining,” Opt. Laser Technol. 42, 1080–1083 (2010).
[Crossref]

2009 (2)

M. A. C. de Araujo, R. Silva, E. de Lima, D. P. Pereira, and P. C. de Oliveira, “Measurements of G laser beam radius using the knife-edge technique: improvement on data-analysis,” Appl. Opt. 48, 393–396 (2009).
[Crossref]

L. Lévesque, “Divergence of far-infrared laser beam and collimation for Galilean and Keplerian system designs,” Opt. Laser Technol. 41, 557–561 (2009).
[Crossref]

2008 (1)

Y. Li, D. Liu, F. Qi, H. Yang, and Q. Gong, “Femtosecond laser micromachining and microfabrication in transparent materials,” Proc. SPIE 6825, 68250K (2008).
[Crossref]

1997 (1)

1991 (1)

1987 (1)

R. G. H. Greer, D. P. Murtagh, I. C. McDade, and E. J. Llewellyn, “Rocket photometry and the lower thermospheric oxygen night glow,” Philos. Trans. R. Soc. London, Ser. A 323, 579–595 (1987).
[Crossref]

Balachninaite, O.

J. Skruibis, O. Balachninaite, S. Butkus, V. Vicaitis, and V. Sirutkaitis, “Multiple-pulse laser-induced breakdown spectroscopy for monitoring the femtosecond laser micromachining process of glass,” Opt. Laser Technol. 111, 295–302 (2019).
[Crossref]

Bélanger, P. A.

Butkus, S.

J. Skruibis, O. Balachninaite, S. Butkus, V. Vicaitis, and V. Sirutkaitis, “Multiple-pulse laser-induced breakdown spectroscopy for monitoring the femtosecond laser micromachining process of glass,” Opt. Laser Technol. 111, 295–302 (2019).
[Crossref]

Casperon, L. W.

Chen, Z.

W. He, K. Wu, Y. Feng, D. Fu, Z. Chen, and F. Li, “The radiative transfer characteristics of the O2 infrared atmospheric band in limb-viewing geometry,” Remote Sens. 11, 2702 (2019).
[Crossref]

Chmelickova, H.

L. Rihakova and H. Chmelickova, “Laser micromachining of glass, silicon and ceramics,” Adv. Mater. Sci. Eng. 2015, 584952 (2015).
[Crossref]

Cubaud, T.

S. Darvishi, T. Cubaud, and J. P. Longtin, “Ultrafast laser machining of tapered microchannels in glass and PDMS," Opt. Laser Eng. 50, 210–214 (2012).
[Crossref]

Darvishi, S.

S. Darvishi, T. Cubaud, and J. P. Longtin, “Ultrafast laser machining of tapered microchannels in glass and PDMS," Opt. Laser Eng. 50, 210–214 (2012).
[Crossref]

de Araujo, M. A. C.

de Lima, E.

de Oliveira, P. C.

Feng, Y.

W. He, K. Wu, Y. Feng, D. Fu, Z. Chen, and F. Li, “The radiative transfer characteristics of the O2 infrared atmospheric band in limb-viewing geometry,” Remote Sens. 11, 2702 (2019).
[Crossref]

Fu, D.

W. He, K. Wu, Y. Feng, D. Fu, Z. Chen, and F. Li, “The radiative transfer characteristics of the O2 infrared atmospheric band in limb-viewing geometry,” Remote Sens. 11, 2702 (2019).
[Crossref]

Fu, E.

P. S. Mihalic, B. Toley, J. Houghtaling, T. Liang, P. Yager, and E. Fu, “CO2 laser cutting and ablative etching for the fabrication of paper-based devices,” J. Micromech. Microeng. 23, 067003 (2013).
[Crossref]

Gong, Q.

Y. Li, D. Liu, F. Qi, H. Yang, and Q. Gong, “Femtosecond laser micromachining and microfabrication in transparent materials,” Proc. SPIE 6825, 68250K (2008).
[Crossref]

Greer, R. G. H.

R. G. H. Greer, D. P. Murtagh, I. C. McDade, and E. J. Llewellyn, “Rocket photometry and the lower thermospheric oxygen night glow,” Philos. Trans. R. Soc. London, Ser. A 323, 579–595 (1987).
[Crossref]

He, W.

W. He, K. Wu, Y. Feng, D. Fu, Z. Chen, and F. Li, “The radiative transfer characteristics of the O2 infrared atmospheric band in limb-viewing geometry,” Remote Sens. 11, 2702 (2019).
[Crossref]

Houghtaling, J.

P. S. Mihalic, B. Toley, J. Houghtaling, T. Liang, P. Yager, and E. Fu, “CO2 laser cutting and ablative etching for the fabrication of paper-based devices,” J. Micromech. Microeng. 23, 067003 (2013).
[Crossref]

Jdanov, V.

L. Lévesque and V. Jdanov, “CO2 laser ablation of bent optical fibers for sensing applications,” J. Opt. 13, 015603 (2011).
[Crossref]

L. Lévesque and V. Jdanov, “Optical fiber cleaved at an angle by CO2 laser ablation: application to micromachining,” Opt. Laser Technol. 42, 1080–1083 (2010).
[Crossref]

Lévesque, L.

L. Lévesque and V. Jdanov, “CO2 laser ablation of bent optical fibers for sensing applications,” J. Opt. 13, 015603 (2011).
[Crossref]

L. Lévesque and V. Jdanov, “Optical fiber cleaved at an angle by CO2 laser ablation: application to micromachining,” Opt. Laser Technol. 42, 1080–1083 (2010).
[Crossref]

L. Lévesque, “Divergence of far-infrared laser beam and collimation for Galilean and Keplerian system designs,” Opt. Laser Technol. 41, 557–561 (2009).
[Crossref]

Li, F.

W. He, K. Wu, Y. Feng, D. Fu, Z. Chen, and F. Li, “The radiative transfer characteristics of the O2 infrared atmospheric band in limb-viewing geometry,” Remote Sens. 11, 2702 (2019).
[Crossref]

Li, Y.

Y. Li, D. Liu, F. Qi, H. Yang, and Q. Gong, “Femtosecond laser micromachining and microfabrication in transparent materials,” Proc. SPIE 6825, 68250K (2008).
[Crossref]

Liang, T.

P. S. Mihalic, B. Toley, J. Houghtaling, T. Liang, P. Yager, and E. Fu, “CO2 laser cutting and ablative etching for the fabrication of paper-based devices,” J. Micromech. Microeng. 23, 067003 (2013).
[Crossref]

Liu, D.

Y. Li, D. Liu, F. Qi, H. Yang, and Q. Gong, “Femtosecond laser micromachining and microfabrication in transparent materials,” Proc. SPIE 6825, 68250K (2008).
[Crossref]

Llewellyn, E. J.

R. G. H. Greer, D. P. Murtagh, I. C. McDade, and E. J. Llewellyn, “Rocket photometry and the lower thermospheric oxygen night glow,” Philos. Trans. R. Soc. London, Ser. A 323, 579–595 (1987).
[Crossref]

Longtin, J. P.

S. Darvishi, T. Cubaud, and J. P. Longtin, “Ultrafast laser machining of tapered microchannels in glass and PDMS," Opt. Laser Eng. 50, 210–214 (2012).
[Crossref]

May, L.

L. May, “From textiles to meat: CO2 lasers leave their mark,” in Euro Photonics, Munich, Germany, June2019.

McDade, I. C.

R. G. H. Greer, D. P. Murtagh, I. C. McDade, and E. J. Llewellyn, “Rocket photometry and the lower thermospheric oxygen night glow,” Philos. Trans. R. Soc. London, Ser. A 323, 579–595 (1987).
[Crossref]

Mihalic, P. S.

P. S. Mihalic, B. Toley, J. Houghtaling, T. Liang, P. Yager, and E. Fu, “CO2 laser cutting and ablative etching for the fabrication of paper-based devices,” J. Micromech. Microeng. 23, 067003 (2013).
[Crossref]

Murtagh, D. P.

R. G. H. Greer, D. P. Murtagh, I. C. McDade, and E. J. Llewellyn, “Rocket photometry and the lower thermospheric oxygen night glow,” Philos. Trans. R. Soc. London, Ser. A 323, 579–595 (1987).
[Crossref]

Pereira, D. P.

Qi, F.

Y. Li, D. Liu, F. Qi, H. Yang, and Q. Gong, “Femtosecond laser micromachining and microfabrication in transparent materials,” Proc. SPIE 6825, 68250K (2008).
[Crossref]

Rihakova, L.

L. Rihakova and H. Chmelickova, “Laser micromachining of glass, silicon and ceramics,” Adv. Mater. Sci. Eng. 2015, 584952 (2015).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), p. 9497.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1986), pp. 581–585.

Silva, R.

Sirutkaitis, V.

J. Skruibis, O. Balachninaite, S. Butkus, V. Vicaitis, and V. Sirutkaitis, “Multiple-pulse laser-induced breakdown spectroscopy for monitoring the femtosecond laser micromachining process of glass,” Opt. Laser Technol. 111, 295–302 (2019).
[Crossref]

Skruibis, J.

J. Skruibis, O. Balachninaite, S. Butkus, V. Vicaitis, and V. Sirutkaitis, “Multiple-pulse laser-induced breakdown spectroscopy for monitoring the femtosecond laser micromachining process of glass,” Opt. Laser Technol. 111, 295–302 (2019).
[Crossref]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), p. 9497.

Toley, B.

P. S. Mihalic, B. Toley, J. Houghtaling, T. Liang, P. Yager, and E. Fu, “CO2 laser cutting and ablative etching for the fabrication of paper-based devices,” J. Micromech. Microeng. 23, 067003 (2013).
[Crossref]

Tovar, A. A.

Vicaitis, V.

J. Skruibis, O. Balachninaite, S. Butkus, V. Vicaitis, and V. Sirutkaitis, “Multiple-pulse laser-induced breakdown spectroscopy for monitoring the femtosecond laser micromachining process of glass,” Opt. Laser Technol. 111, 295–302 (2019).
[Crossref]

Wu, K.

W. He, K. Wu, Y. Feng, D. Fu, Z. Chen, and F. Li, “The radiative transfer characteristics of the O2 infrared atmospheric band in limb-viewing geometry,” Remote Sens. 11, 2702 (2019).
[Crossref]

Yager, P.

P. S. Mihalic, B. Toley, J. Houghtaling, T. Liang, P. Yager, and E. Fu, “CO2 laser cutting and ablative etching for the fabrication of paper-based devices,” J. Micromech. Microeng. 23, 067003 (2013).
[Crossref]

Yang, H.

Y. Li, D. Liu, F. Qi, H. Yang, and Q. Gong, “Femtosecond laser micromachining and microfabrication in transparent materials,” Proc. SPIE 6825, 68250K (2008).
[Crossref]

Yariv, A.

A. Yariv, Quantum Electronics, 2nd ed. (Wiley, 1975), pp. 99–106.

Adv. Mater. Sci. Eng. (1)

L. Rihakova and H. Chmelickova, “Laser micromachining of glass, silicon and ceramics,” Adv. Mater. Sci. Eng. 2015, 584952 (2015).
[Crossref]

Appl. Opt. (1)

J. Micromech. Microeng. (1)

P. S. Mihalic, B. Toley, J. Houghtaling, T. Liang, P. Yager, and E. Fu, “CO2 laser cutting and ablative etching for the fabrication of paper-based devices,” J. Micromech. Microeng. 23, 067003 (2013).
[Crossref]

J. Opt. (1)

L. Lévesque and V. Jdanov, “CO2 laser ablation of bent optical fibers for sensing applications,” J. Opt. 13, 015603 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Laser Eng. (1)

S. Darvishi, T. Cubaud, and J. P. Longtin, “Ultrafast laser machining of tapered microchannels in glass and PDMS," Opt. Laser Eng. 50, 210–214 (2012).
[Crossref]

Opt. Laser Technol. (3)

L. Lévesque and V. Jdanov, “Optical fiber cleaved at an angle by CO2 laser ablation: application to micromachining,” Opt. Laser Technol. 42, 1080–1083 (2010).
[Crossref]

L. Lévesque, “Divergence of far-infrared laser beam and collimation for Galilean and Keplerian system designs,” Opt. Laser Technol. 41, 557–561 (2009).
[Crossref]

J. Skruibis, O. Balachninaite, S. Butkus, V. Vicaitis, and V. Sirutkaitis, “Multiple-pulse laser-induced breakdown spectroscopy for monitoring the femtosecond laser micromachining process of glass,” Opt. Laser Technol. 111, 295–302 (2019).
[Crossref]

Opt. Lett. (1)

Philos. Trans. R. Soc. London, Ser. A (1)

R. G. H. Greer, D. P. Murtagh, I. C. McDade, and E. J. Llewellyn, “Rocket photometry and the lower thermospheric oxygen night glow,” Philos. Trans. R. Soc. London, Ser. A 323, 579–595 (1987).
[Crossref]

Proc. SPIE (1)

Y. Li, D. Liu, F. Qi, H. Yang, and Q. Gong, “Femtosecond laser micromachining and microfabrication in transparent materials,” Proc. SPIE 6825, 68250K (2008).
[Crossref]

Remote Sens. (1)

W. He, K. Wu, Y. Feng, D. Fu, Z. Chen, and F. Li, “The radiative transfer characteristics of the O2 infrared atmospheric band in limb-viewing geometry,” Remote Sens. 11, 2702 (2019).
[Crossref]

Other (7)

https://ii-vi.com/laser-resources/ .

https://physics.nist.gov/PhysRefData/ASD/lines_form.html .

A. E. Siegman, Lasers (University Science, 1986), pp. 581–585.

A. Yariv, Quantum Electronics, 2nd ed. (Wiley, 1975), pp. 99–106.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), p. 9497.

Gaussian beam Optics, “CVI Melles Griot 2009 technical guide,” http://www.cvimellesgriot.com .

L. May, “From textiles to meat: CO2 lasers leave their mark,” in Euro Photonics, Munich, Germany, June2019.

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Setup with 2D scanning device during marking procedure.
Fig. 2.
Fig. 2. (a) Knife-edge setup showing a thermopile about 30 cm from lens ${{\rm{L}}_3}$ and (b) setup when the motorized Z-stage and the thermopile are removed with the optical scanner in place.
Fig. 3.
Fig. 3. (a) Power density near the focal point located at ${l_f} \sim{128.1}\;{\rm{mm}}$. (b) Beam radius $w_3$ with the experimental data points. In the computation, we used ${{\rm{f}}_1} = {12.7}\;{\rm{mm}}$, ${{\rm{f}}_2} = {{50}}\;{\rm{mm}}$, ${{\rm{f}}_3} = {{127}}\;{\rm{mm}}$, ${{\rm{l}}_p} = {{238}}\;{\rm{mm}}$, ${\rm{s}} = {62.5}\;{\rm{mm}}$, ${{\rm{w}}_{\rm{o}}} = {1.1}\;{\rm{mm}}$, $\lambda = {{10.6\;\unicode{x00B5}{\rm m}}}$, ${{\rm{M}}^2} = {1.04}$, and ${{\rm{R}}_1} = {{805}}\;{\rm{mm}}$. The lasing power was assumed to be 3 W.
Fig. 4.
Fig. 4. Spectrogram of soda-lime glass slide showing the Na D-line near 590 nm and two other lines near 762 nm and 765 nm.
Fig. 5.
Fig. 5. Spectrograms taken at various z positions during a laser shot. The z positions are ${\rm{z}} = - {{1}}$, ${-}{0.6}$, ${-}{0.5}$, ${-}{0.25}$, 0, 0.5, 1, and 1.25. Only the spectroscopic Na D-lines are used to probe the Rayleigh zone.
Fig. 6.
Fig. 6. Laser marks as the soda-lime glass transits through the Rayleigh range. The marks are magnified 200 times. The scale shown in (a) is the same as in (b)–(g).
Fig. 7.
Fig. 7. Same 3D plot as in Fig. 5 with the normalized power density curve superimposed to the spectrograms near $\lambda \sim{{590}}\;{\rm{nm}}$.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M = T L 3 L 3 T L 2 L 2 S L 1 T A p = ( 1 l f 0 1 ) ( 1 0 1 / f 3 1 ) ( 1 l p 0 1 ) ( 1 0 1 / f 2 1 ) ( 1 s 0 1 ) ( 1 0 1 / f 1 1 ) ( 1 R 1 0 1 ) .
1 q ~ ( z ) = 1 R ( z ) j λ π w 2 ( z ) ,
q ~ 3 = A q ~ o + B C q ~ o + D ,
w 3 = w o A 2 + B 2 δ L 2 ,

Metrics