Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Hybrid IPSO-IAGA-BPNN algorithm-based rapid multi-objective optimization of a fully parameterized spaceborne primary mirror

Not Accessible

Your library or personal account may give you access

Abstract

The surface figure precision, weight, and dynamic performance of spaceborne primary mirrors depend on mirror structure parameters, which are usually optimized to improve the overall performance. To realize rapid multi-objective design optimization of a primary mirror with multiple apertures, a fully parameterized primary mirror structure is established. A surrogate model based on a hybrid of improved particle swarm optimization (IPSO), adaptive genetic algorithm (IAGA), and optimized back propagation neural network (IPSO-IAGA-BPNN) is developed to replace optomechanical simulation with its high computational cost. In this model, a self-adaptive inertia weight and a modified genetic operator are introduced into the particle swarm optimization (PSO) and adaptive genetic algorithm (AGA), respectively. The connection parameters of BPNN are optimized by the IPSO-IAGA algorithm for global searching capability. Further, the proposed IPSO-IAGA-BPNN, based on a rapid multi-objective optimization framework for a fully parameterized primary mirror structure, is established. Moreover, in addition to the proposed IPSO-IAGA-BPNN model, the Kriging, RSM, BPNN, GA-BPNN, PSO-BPNN, and PSO-GA-BPNN models are also analyzed as contrast models. The comparison results indicate that the predicted value obtained by IPSO-IAGA-BPNN is superior to the six other surrogate models since its mean absolute percentage error is less than 3% and its ${R^2}$ is more than 0.99. Finally, we present a Pareto-optimal primary mirror design and implement it through three optimization methods. The verification results show that the proposed method predicts mirror structural performance more accurately than existing surrogate-based methods, and promotes significantly superior computational efficiency compared to the conventional integration-based method.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Improved particle swarm optimization algorithm for high performance SPR sensor design

Lei Han, Chaoyu Xu, Tianye Huang, and Xueyan Dang
Appl. Opt. 60(6) 1753-1760 (2021)

Optimal design for the support structure of a cavity mirror in a chemical oxygen iodine laser resonator

Ding Cui, Zhaoxiang Deng, Yuqiang Xian, Xiaoyang Hu, and Lin Zhang
Appl. Opt. 56(35) 9793-9803 (2017)

Phase diversity method based on an improved particle swarm algorithm used in co-phasing error detection

Yingjian Ge, Shengqian Wang, and Hao Xian
Appl. Opt. 59(31) 9735-9743 (2020)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.