Abstract

Optical feedback in lasers is being used for unconventional imaging of fluid dynamics, pressure fields, material properties, and free-carrier distribution, especially in spectral regions where two-dimensional detectors are not yet available. As this technique requires scanning the laser spot across the target, the resulting image contrast is often hampered by the speckle effect. Compressed sensing is becoming a workhorse technique for signal analysis, allowing the reconstruction of complex images from a relatively small number of integrated (single-pixel) measurements, and is being efficiently adapted to a number of single-pixel detector cameras. We applied compressed sensing algorithms to the inherently single-pixel optical feedback in a semiconductor diode laser, demonstrating for the first time, to the best of our knowledge, scanless and detectorless speckle-free imaging of a simple binary object.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Compressive single-pixel hyperspectral imaging using RGB sensors

Chenning Tao, Huanzheng Zhu, Xucheng Wang, Shuhang Zheng, Qin Xie, Chang Wang, Rengmao Wu, and Zhenrong Zheng
Opt. Express 29(7) 11207-11220 (2021)

Single-pixel compressive diffractive imaging

Ryoichi Horisaki, Hiroaki Matsui, Riki Egami, and Jun Tanida
Appl. Opt. 56(5) 1353-1357 (2017)

Single-pixel imaging in the presence of specular reflections

Mengchao Ma, Qianzhen Sun, Xicheng Gao, Huaxia Deng, Guan Wang, Yilong Su, Qingtian Guan, and Xiang Zhong
Appl. Opt. 60(9) 2633-2639 (2021)

References

  • View by:
  • |
  • |
  • |

  1. M. Brambilla, L. L. Columbo, M. Dabbicco, F. De Lucia, F. P. Mezzapesa, and G. Scamarcio, “Versatile multimodality imaging system based on detectorless and scanless optical feedback interferometry—a retrospective overview for a prospective vision,” Sensors 20, 5930 (2020).
    [Crossref]
  2. A. Bearden, M. P. O’Neill, L. C. Osborne, and T. L. Wong, “Imaging and vibrational analysis with laser-feedback interferometry,” Opt. Lett. 18, 238–240 (1993).
    [Crossref]
  3. K. Zhu, Y. Lu, S. Zhang, H. Ruan, S. Usuki, and Y. Tan, “Ultrasound modulated laser confocal feedback imaging inside turbid media,” Opt. Lett. 43, 1207–1210 (2018).
    [Crossref]
  4. D. Flores, A. Quotb, C. Tronche, F. Jayat, L. Trojman, and J. Perchoux, “Optical feedback interferometry imaging sensor for micrometric flow-patterns using continuous scanning,” in IEEE Sensors (IEEE, 2019), pp. 1–4.
  5. A. Rakić, T. Taimre, K. Bertling, Y. Lim, P. Dean, A. Valavanis, and D. Indjin, “Sensing and imaging using laser feedback interferometry with quantum cascade lasers,” Appl. Phys. Rev. 6, 021320 (2019).
    [Crossref]
  6. R. Kliese, Y. L. Lim, T. Bosch, and A. D. Rakić, “GAN laser self-mixing velocimeter for measuring slow flows,” Opt. Lett. 35, 814–816 (2010).
    [Crossref]
  7. J. R. Tucker, J. L. Baque, Y. L. Lim, A. V. Zvyagin, and A. D. Rakić, “Parallel self-mixing imaging system based on an array of vertical-cavity surface-emitting lasers,” Appl. Opt. 46, 6237–6246 (2007).
    [Crossref]
  8. F. Mezzapesa, M. Petruzzella, M. Dabbicco, H. Beere, D. Ritchie, M. Vitiello, and G. Scamarcio, “Continuous-wave reflection imaging using optical feedback interferometry in terahertz and mid-infrared quantum cascade lasers,” IEEE Trans. Terahertz Sci. Technol. 4, 631–633 (2014).
    [Crossref]
  9. P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, and A. G. Davie, “Terahertz imaging through self-mixing in a quantum cascade laser,” Opt. Lett. 36, 2587–2589 (2011).
    [Crossref]
  10. L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).
    [Crossref]
  11. K. Bertling, J. Perchoux, T. Taimre, R. Malkin, D. Robert, A. D. Rakić, and T. Bosch, “Imaging of acoustic fields using optical feedback interferometry,” Opt. Express 22, 30346–30356 (2014).
    [Crossref]
  12. F. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, M. Vitiello, and G. Scamarcio, “Imaging of free carriers in semiconductors via optical feedback in terahertz quantum cascade lasers,” Appl. Phys. Lett. 104, 041112 (2014).
    [Crossref]
  13. Y. L. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Biomed. Opt. Express 5, 3981–3989 (2014).
    [Crossref]
  14. A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, P. Dean, D. Indjin, Z. Ikonić, P. Harrison, A. Valavanis, S. P. Khanna, M. Lachab, S. J. Wilson, E. H. Linfield, and A. G. Davies, “Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis,” Opt. Express 21, 22194–22205 (2013).
    [Crossref]
  15. M. Dabbicco and G. Colafemmina, “Multi-wavelength imaging of tissue phantoms by optical feedback interferometry,” Proc. SPIE 10891, 108910W (2019).
    [Crossref]
  16. K. Singh, A. Bandyopadhyay, K. Bertling, Y. L. Lim, T. Gillespie, A. Robinson, D. Indjin, Y. Han, L. Li, E. H. Linfield, A. G. Davies, P. Dean, A. D. Rakic, and A. Sengupta, “Monitoring water dynamics in plants using laser feedback interferometry,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, 2020), paper C12B_4.
  17. P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. Lim, R. Alhathlool, A. Burnett, L. Li, S. Khanna, and D. Indjin, “Terahertz imaging using quantum cascade lasers—a review of systems and applications,” J. Phys. D 47, 374008 (2014).
    [Crossref]
  18. R. Juškaitis, N. Rea, and T. Wilson, “Semiconductor laser confocal microscopy,” Appl. Opt. 33, 578–584 (1994).
    [Crossref]
  19. A. Witomski, E. Lacot, O. Hugon, and O. Jacquin, “Two-dimensional synthetic aperture laser optical feedback imaging using galvanometric scanning,” Appl. Opt. 47, 860–869 (2008).
    [Crossref]
  20. D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J.-B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined vertical-cavity surface-emitting laser,” Jpn. J. Appl. Phys. 42, L1469 (2003).
    [Crossref]
  21. P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).
    [Crossref]
  22. K. Lee and Y. Park, “Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor,” Nat. Commun. 7, 13359 (2016).
    [Crossref]
  23. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
    [Crossref]
  24. B. Boruah and M. Neil, “Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam,” Rev. Sci. Instrum. 80, 013705 (2009).
    [Crossref]
  25. E. Candes and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23, 969 (2007).
    [Crossref]
  26. M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13, 13–20 (2019).
    [Crossref]
  27. D. M. Mittleman, “Twenty years of terahertz imaging [invited],” Opt. Express 26, 9417–9431 (2018).
    [Crossref]
  28. T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photon. 7, 570–631 (2015).
    [Crossref]
  29. E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
    [Crossref]
  30. A. Domahidi, E. Chu, and S. Boyd, “ECOS: an SOCP solver for embedded systems,” in European Control Conference (ECC) (2013), pp. 3071–3076.
  31. X. Chen, Z. Du, J. Li, X. Li, and H. Zhang, “Compressed sensing based on dictionary learning for extracting impulse components,” Signal Process. 96, 94–109 (2014), special issue on Time-Frequency Methods for Condition Based Maintenance and Modal Analysis.
    [Crossref]
  32. H. Rauhut, “Compressive sensing and structured random matrices,” Theor. Found. Numer. Methods Sparse Recovery 9, 1–92 (2010).
  33. E. Crespo Marques, N. Maciel, L. Naviner, H. Cai, and J. Yang, “A review of sparse recovery algorithms,” IEEE Access 7, 1300–1322 (2019).
    [Crossref]
  34. R. Kliese, T. Taimre, A. A. A. Bakar, Y. L. Lim, K. Bertling, M. Nikolić, J. Perchoux, T. Bosch, and A. D. Rakić, “Solving self-mixing equations for arbitrary feedback levels: a concise algorithm,” Appl. Opt. 53, 3723–3736 (2014).
    [Crossref]
  35. Q. Huynh-Thu and M. Ghanbari, “The accuracy of PSNR in predicting video quality for different video scenes and frame rates,” Telecommun. Syst. 49, 35–48 (2012).
    [Crossref]
  36. K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Höfling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
    [Crossref]

2020 (1)

M. Brambilla, L. L. Columbo, M. Dabbicco, F. De Lucia, F. P. Mezzapesa, and G. Scamarcio, “Versatile multimodality imaging system based on detectorless and scanless optical feedback interferometry—a retrospective overview for a prospective vision,” Sensors 20, 5930 (2020).
[Crossref]

2019 (4)

A. Rakić, T. Taimre, K. Bertling, Y. Lim, P. Dean, A. Valavanis, and D. Indjin, “Sensing and imaging using laser feedback interferometry with quantum cascade lasers,” Appl. Phys. Rev. 6, 021320 (2019).
[Crossref]

M. Dabbicco and G. Colafemmina, “Multi-wavelength imaging of tissue phantoms by optical feedback interferometry,” Proc. SPIE 10891, 108910W (2019).
[Crossref]

M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13, 13–20 (2019).
[Crossref]

E. Crespo Marques, N. Maciel, L. Naviner, H. Cai, and J. Yang, “A review of sparse recovery algorithms,” IEEE Access 7, 1300–1322 (2019).
[Crossref]

2018 (2)

2016 (3)

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).
[Crossref]

K. Lee and Y. Park, “Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor,” Nat. Commun. 7, 13359 (2016).
[Crossref]

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Höfling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

2015 (1)

2014 (7)

R. Kliese, T. Taimre, A. A. A. Bakar, Y. L. Lim, K. Bertling, M. Nikolić, J. Perchoux, T. Bosch, and A. D. Rakić, “Solving self-mixing equations for arbitrary feedback levels: a concise algorithm,” Appl. Opt. 53, 3723–3736 (2014).
[Crossref]

X. Chen, Z. Du, J. Li, X. Li, and H. Zhang, “Compressed sensing based on dictionary learning for extracting impulse components,” Signal Process. 96, 94–109 (2014), special issue on Time-Frequency Methods for Condition Based Maintenance and Modal Analysis.
[Crossref]

F. Mezzapesa, M. Petruzzella, M. Dabbicco, H. Beere, D. Ritchie, M. Vitiello, and G. Scamarcio, “Continuous-wave reflection imaging using optical feedback interferometry in terahertz and mid-infrared quantum cascade lasers,” IEEE Trans. Terahertz Sci. Technol. 4, 631–633 (2014).
[Crossref]

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. Lim, R. Alhathlool, A. Burnett, L. Li, S. Khanna, and D. Indjin, “Terahertz imaging using quantum cascade lasers—a review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

K. Bertling, J. Perchoux, T. Taimre, R. Malkin, D. Robert, A. D. Rakić, and T. Bosch, “Imaging of acoustic fields using optical feedback interferometry,” Opt. Express 22, 30346–30356 (2014).
[Crossref]

F. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, M. Vitiello, and G. Scamarcio, “Imaging of free carriers in semiconductors via optical feedback in terahertz quantum cascade lasers,” Appl. Phys. Lett. 104, 041112 (2014).
[Crossref]

Y. L. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Biomed. Opt. Express 5, 3981–3989 (2014).
[Crossref]

2013 (2)

A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, P. Dean, D. Indjin, Z. Ikonić, P. Harrison, A. Valavanis, S. P. Khanna, M. Lachab, S. J. Wilson, E. H. Linfield, and A. G. Davies, “Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis,” Opt. Express 21, 22194–22205 (2013).
[Crossref]

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).
[Crossref]

2012 (2)

Q. Huynh-Thu and M. Ghanbari, “The accuracy of PSNR in predicting video quality for different video scenes and frame rates,” Telecommun. Syst. 49, 35–48 (2012).
[Crossref]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref]

2011 (1)

2010 (2)

R. Kliese, Y. L. Lim, T. Bosch, and A. D. Rakić, “GAN laser self-mixing velocimeter for measuring slow flows,” Opt. Lett. 35, 814–816 (2010).
[Crossref]

H. Rauhut, “Compressive sensing and structured random matrices,” Theor. Found. Numer. Methods Sparse Recovery 9, 1–92 (2010).

2009 (1)

B. Boruah and M. Neil, “Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam,” Rev. Sci. Instrum. 80, 013705 (2009).
[Crossref]

2008 (1)

2007 (2)

2006 (1)

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[Crossref]

2003 (1)

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J.-B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined vertical-cavity surface-emitting laser,” Jpn. J. Appl. Phys. 42, L1469 (2003).
[Crossref]

1994 (1)

1993 (1)

Agnew, G.

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Höfling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

Alhathlool, R.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. Lim, R. Alhathlool, A. Burnett, L. Li, S. Khanna, and D. Indjin, “Terahertz imaging using quantum cascade lasers—a review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Bakar, A. A. A.

Bandyopadhyay, A.

K. Singh, A. Bandyopadhyay, K. Bertling, Y. L. Lim, T. Gillespie, A. Robinson, D. Indjin, Y. Han, L. Li, E. H. Linfield, A. G. Davies, P. Dean, A. D. Rakic, and A. Sengupta, “Monitoring water dynamics in plants using laser feedback interferometry,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, 2020), paper C12B_4.

Baque, J. L.

Bardinal, V.

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J.-B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined vertical-cavity surface-emitting laser,” Jpn. J. Appl. Phys. 42, L1469 (2003).
[Crossref]

Bearden, A.

Beere, H.

F. Mezzapesa, M. Petruzzella, M. Dabbicco, H. Beere, D. Ritchie, M. Vitiello, and G. Scamarcio, “Continuous-wave reflection imaging using optical feedback interferometry in terahertz and mid-infrared quantum cascade lasers,” IEEE Trans. Terahertz Sci. Technol. 4, 631–633 (2014).
[Crossref]

Bertling, K.

A. Rakić, T. Taimre, K. Bertling, Y. Lim, P. Dean, A. Valavanis, and D. Indjin, “Sensing and imaging using laser feedback interferometry with quantum cascade lasers,” Appl. Phys. Rev. 6, 021320 (2019).
[Crossref]

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Höfling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photon. 7, 570–631 (2015).
[Crossref]

R. Kliese, T. Taimre, A. A. A. Bakar, Y. L. Lim, K. Bertling, M. Nikolić, J. Perchoux, T. Bosch, and A. D. Rakić, “Solving self-mixing equations for arbitrary feedback levels: a concise algorithm,” Appl. Opt. 53, 3723–3736 (2014).
[Crossref]

K. Bertling, J. Perchoux, T. Taimre, R. Malkin, D. Robert, A. D. Rakić, and T. Bosch, “Imaging of acoustic fields using optical feedback interferometry,” Opt. Express 22, 30346–30356 (2014).
[Crossref]

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. Lim, R. Alhathlool, A. Burnett, L. Li, S. Khanna, and D. Indjin, “Terahertz imaging using quantum cascade lasers—a review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Y. L. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Biomed. Opt. Express 5, 3981–3989 (2014).
[Crossref]

A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, P. Dean, D. Indjin, Z. Ikonić, P. Harrison, A. Valavanis, S. P. Khanna, M. Lachab, S. J. Wilson, E. H. Linfield, and A. G. Davies, “Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis,” Opt. Express 21, 22194–22205 (2013).
[Crossref]

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).
[Crossref]

K. Singh, A. Bandyopadhyay, K. Bertling, Y. L. Lim, T. Gillespie, A. Robinson, D. Indjin, Y. Han, L. Li, E. H. Linfield, A. G. Davies, P. Dean, A. D. Rakic, and A. Sengupta, “Monitoring water dynamics in plants using laser feedback interferometry,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, 2020), paper C12B_4.

Boruah, B.

B. Boruah and M. Neil, “Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam,” Rev. Sci. Instrum. 80, 013705 (2009).
[Crossref]

Bosch, T.

Boyd, S.

A. Domahidi, E. Chu, and S. Boyd, “ECOS: an SOCP solver for embedded systems,” in European Control Conference (ECC) (2013), pp. 3071–3076.

Brambilla, M.

M. Brambilla, L. L. Columbo, M. Dabbicco, F. De Lucia, F. P. Mezzapesa, and G. Scamarcio, “Versatile multimodality imaging system based on detectorless and scanless optical feedback interferometry—a retrospective overview for a prospective vision,” Sensors 20, 5930 (2020).
[Crossref]

F. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, M. Vitiello, and G. Scamarcio, “Imaging of free carriers in semiconductors via optical feedback in terahertz quantum cascade lasers,” Appl. Phys. Lett. 104, 041112 (2014).
[Crossref]

Bringer, C.

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J.-B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined vertical-cavity surface-emitting laser,” Jpn. J. Appl. Phys. 42, L1469 (2003).
[Crossref]

Burnett, A.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. Lim, R. Alhathlool, A. Burnett, L. Li, S. Khanna, and D. Indjin, “Terahertz imaging using quantum cascade lasers—a review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Cai, H.

E. Crespo Marques, N. Maciel, L. Naviner, H. Cai, and J. Yang, “A review of sparse recovery algorithms,” IEEE Access 7, 1300–1322 (2019).
[Crossref]

Campagnolo, L.

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).
[Crossref]

Camps, T.

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J.-B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined vertical-cavity surface-emitting laser,” Jpn. J. Appl. Phys. 42, L1469 (2003).
[Crossref]

Candes, E.

E. Candes and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23, 969 (2007).
[Crossref]

Candès, E. J.

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[Crossref]

Cao, H.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref]

Chen, X.

X. Chen, Z. Du, J. Li, X. Li, and H. Zhang, “Compressed sensing based on dictionary learning for extracting impulse components,” Signal Process. 96, 94–109 (2014), special issue on Time-Frequency Methods for Condition Based Maintenance and Modal Analysis.
[Crossref]

Choma, M. A.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref]

Chu, E.

A. Domahidi, E. Chu, and S. Boyd, “ECOS: an SOCP solver for embedded systems,” in European Control Conference (ECC) (2013), pp. 3071–3076.

Colafemmina, G.

M. Dabbicco and G. Colafemmina, “Multi-wavelength imaging of tissue phantoms by optical feedback interferometry,” Proc. SPIE 10891, 108910W (2019).
[Crossref]

Columbo, L.

F. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, M. Vitiello, and G. Scamarcio, “Imaging of free carriers in semiconductors via optical feedback in terahertz quantum cascade lasers,” Appl. Phys. Lett. 104, 041112 (2014).
[Crossref]

Columbo, L. L.

M. Brambilla, L. L. Columbo, M. Dabbicco, F. De Lucia, F. P. Mezzapesa, and G. Scamarcio, “Versatile multimodality imaging system based on detectorless and scanless optical feedback interferometry—a retrospective overview for a prospective vision,” Sensors 20, 5930 (2020).
[Crossref]

Crespo Marques, E.

E. Crespo Marques, N. Maciel, L. Naviner, H. Cai, and J. Yang, “A review of sparse recovery algorithms,” IEEE Access 7, 1300–1322 (2019).
[Crossref]

Dabbicco, M.

M. Brambilla, L. L. Columbo, M. Dabbicco, F. De Lucia, F. P. Mezzapesa, and G. Scamarcio, “Versatile multimodality imaging system based on detectorless and scanless optical feedback interferometry—a retrospective overview for a prospective vision,” Sensors 20, 5930 (2020).
[Crossref]

M. Dabbicco and G. Colafemmina, “Multi-wavelength imaging of tissue phantoms by optical feedback interferometry,” Proc. SPIE 10891, 108910W (2019).
[Crossref]

F. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, M. Vitiello, and G. Scamarcio, “Imaging of free carriers in semiconductors via optical feedback in terahertz quantum cascade lasers,” Appl. Phys. Lett. 104, 041112 (2014).
[Crossref]

F. Mezzapesa, M. Petruzzella, M. Dabbicco, H. Beere, D. Ritchie, M. Vitiello, and G. Scamarcio, “Continuous-wave reflection imaging using optical feedback interferometry in terahertz and mid-infrared quantum cascade lasers,” IEEE Trans. Terahertz Sci. Technol. 4, 631–633 (2014).
[Crossref]

Davie, A. G.

Davies, A. G.

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).
[Crossref]

Y. L. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Biomed. Opt. Express 5, 3981–3989 (2014).
[Crossref]

A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, P. Dean, D. Indjin, Z. Ikonić, P. Harrison, A. Valavanis, S. P. Khanna, M. Lachab, S. J. Wilson, E. H. Linfield, and A. G. Davies, “Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis,” Opt. Express 21, 22194–22205 (2013).
[Crossref]

K. Singh, A. Bandyopadhyay, K. Bertling, Y. L. Lim, T. Gillespie, A. Robinson, D. Indjin, Y. Han, L. Li, E. H. Linfield, A. G. Davies, P. Dean, A. D. Rakic, and A. Sengupta, “Monitoring water dynamics in plants using laser feedback interferometry,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, 2020), paper C12B_4.

De Lucia, F.

M. Brambilla, L. L. Columbo, M. Dabbicco, F. De Lucia, F. P. Mezzapesa, and G. Scamarcio, “Versatile multimodality imaging system based on detectorless and scanless optical feedback interferometry—a retrospective overview for a prospective vision,” Sensors 20, 5930 (2020).
[Crossref]

Dean, P.

A. Rakić, T. Taimre, K. Bertling, Y. Lim, P. Dean, A. Valavanis, and D. Indjin, “Sensing and imaging using laser feedback interferometry with quantum cascade lasers,” Appl. Phys. Rev. 6, 021320 (2019).
[Crossref]

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).
[Crossref]

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Höfling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. Lim, R. Alhathlool, A. Burnett, L. Li, S. Khanna, and D. Indjin, “Terahertz imaging using quantum cascade lasers—a review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Y. L. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Biomed. Opt. Express 5, 3981–3989 (2014).
[Crossref]

A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, P. Dean, D. Indjin, Z. Ikonić, P. Harrison, A. Valavanis, S. P. Khanna, M. Lachab, S. J. Wilson, E. H. Linfield, and A. G. Davies, “Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis,” Opt. Express 21, 22194–22205 (2013).
[Crossref]

P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, and A. G. Davie, “Terahertz imaging through self-mixing in a quantum cascade laser,” Opt. Lett. 36, 2587–2589 (2011).
[Crossref]

K. Singh, A. Bandyopadhyay, K. Bertling, Y. L. Lim, T. Gillespie, A. Robinson, D. Indjin, Y. Han, L. Li, E. H. Linfield, A. G. Davies, P. Dean, A. D. Rakic, and A. Sengupta, “Monitoring water dynamics in plants using laser feedback interferometry,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, 2020), paper C12B_4.

Domahidi, A.

A. Domahidi, E. Chu, and S. Boyd, “ECOS: an SOCP solver for embedded systems,” in European Control Conference (ECC) (2013), pp. 3071–3076.

Doucet, J.-B.

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J.-B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined vertical-cavity surface-emitting laser,” Jpn. J. Appl. Phys. 42, L1469 (2003).
[Crossref]

Du, Z.

X. Chen, Z. Du, J. Li, X. Li, and H. Zhang, “Compressed sensing based on dictionary learning for extracting impulse components,” Signal Process. 96, 94–109 (2014), special issue on Time-Frequency Methods for Condition Based Maintenance and Modal Analysis.
[Crossref]

Dubreuil, P.

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J.-B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined vertical-cavity surface-emitting laser,” Jpn. J. Appl. Phys. 42, L1469 (2003).
[Crossref]

Edgar, M. P.

M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13, 13–20 (2019).
[Crossref]

Flores, D.

D. Flores, A. Quotb, C. Tronche, F. Jayat, L. Trojman, and J. Perchoux, “Optical feedback interferometry imaging sensor for micrometric flow-patterns using continuous scanning,” in IEEE Sensors (IEEE, 2019), pp. 1–4.

Fontaine, C.

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J.-B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined vertical-cavity surface-emitting laser,” Jpn. J. Appl. Phys. 42, L1469 (2003).
[Crossref]

Ghanbari, M.

Q. Huynh-Thu and M. Ghanbari, “The accuracy of PSNR in predicting video quality for different video scenes and frame rates,” Telecommun. Syst. 49, 35–48 (2012).
[Crossref]

Gibson, G. M.

M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13, 13–20 (2019).
[Crossref]

Gillespie, T.

K. Singh, A. Bandyopadhyay, K. Bertling, Y. L. Lim, T. Gillespie, A. Robinson, D. Indjin, Y. Han, L. Li, E. H. Linfield, A. G. Davies, P. Dean, A. D. Rakic, and A. Sengupta, “Monitoring water dynamics in plants using laser feedback interferometry,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, 2020), paper C12B_4.

Gorecki, C.

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J.-B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined vertical-cavity surface-emitting laser,” Jpn. J. Appl. Phys. 42, L1469 (2003).
[Crossref]

Han, Y.

K. Singh, A. Bandyopadhyay, K. Bertling, Y. L. Lim, T. Gillespie, A. Robinson, D. Indjin, Y. Han, L. Li, E. H. Linfield, A. G. Davies, P. Dean, A. D. Rakic, and A. Sengupta, “Monitoring water dynamics in plants using laser feedback interferometry,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, 2020), paper C12B_4.

Harrison, P.

Heinis, D.

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J.-B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined vertical-cavity surface-emitting laser,” Jpn. J. Appl. Phys. 42, L1469 (2003).
[Crossref]

Höfling, S.

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Höfling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

Hugon, O.

Huynh-Thu, Q.

Q. Huynh-Thu and M. Ghanbari, “The accuracy of PSNR in predicting video quality for different video scenes and frame rates,” Telecommun. Syst. 49, 35–48 (2012).
[Crossref]

Ikonic, Z.

Indjin, D.

A. Rakić, T. Taimre, K. Bertling, Y. Lim, P. Dean, A. Valavanis, and D. Indjin, “Sensing and imaging using laser feedback interferometry with quantum cascade lasers,” Appl. Phys. Rev. 6, 021320 (2019).
[Crossref]

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Höfling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

Y. L. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Biomed. Opt. Express 5, 3981–3989 (2014).
[Crossref]

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. Lim, R. Alhathlool, A. Burnett, L. Li, S. Khanna, and D. Indjin, “Terahertz imaging using quantum cascade lasers—a review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, P. Dean, D. Indjin, Z. Ikonić, P. Harrison, A. Valavanis, S. P. Khanna, M. Lachab, S. J. Wilson, E. H. Linfield, and A. G. Davies, “Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis,” Opt. Express 21, 22194–22205 (2013).
[Crossref]

P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, and A. G. Davie, “Terahertz imaging through self-mixing in a quantum cascade laser,” Opt. Lett. 36, 2587–2589 (2011).
[Crossref]

K. Singh, A. Bandyopadhyay, K. Bertling, Y. L. Lim, T. Gillespie, A. Robinson, D. Indjin, Y. Han, L. Li, E. H. Linfield, A. G. Davies, P. Dean, A. D. Rakic, and A. Sengupta, “Monitoring water dynamics in plants using laser feedback interferometry,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, 2020), paper C12B_4.

Jacquin, O.

Jayat, F.

D. Flores, A. Quotb, C. Tronche, F. Jayat, L. Trojman, and J. Perchoux, “Optical feedback interferometry imaging sensor for micrometric flow-patterns using continuous scanning,” in IEEE Sensors (IEEE, 2019), pp. 1–4.

Juškaitis, R.

Kamp, M.

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Höfling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

Keeley, J.

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).
[Crossref]

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. Lim, R. Alhathlool, A. Burnett, L. Li, S. Khanna, and D. Indjin, “Terahertz imaging using quantum cascade lasers—a review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Khanna, S.

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. Lim, R. Alhathlool, A. Burnett, L. Li, S. Khanna, and D. Indjin, “Terahertz imaging using quantum cascade lasers—a review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Khanna, S. P.

Kliese, R.

Koeth, J.

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Höfling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

Kundu, I.

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).
[Crossref]

Lachab, M.

Lacot, E.

Lee, K.

K. Lee and Y. Park, “Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor,” Nat. Commun. 7, 13359 (2016).
[Crossref]

Li, J.

X. Chen, Z. Du, J. Li, X. Li, and H. Zhang, “Compressed sensing based on dictionary learning for extracting impulse components,” Signal Process. 96, 94–109 (2014), special issue on Time-Frequency Methods for Condition Based Maintenance and Modal Analysis.
[Crossref]

Li, L.

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).
[Crossref]

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. Lim, R. Alhathlool, A. Burnett, L. Li, S. Khanna, and D. Indjin, “Terahertz imaging using quantum cascade lasers—a review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

K. Singh, A. Bandyopadhyay, K. Bertling, Y. L. Lim, T. Gillespie, A. Robinson, D. Indjin, Y. Han, L. Li, E. H. Linfield, A. G. Davies, P. Dean, A. D. Rakic, and A. Sengupta, “Monitoring water dynamics in plants using laser feedback interferometry,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, 2020), paper C12B_4.

Li, X.

X. Chen, Z. Du, J. Li, X. Li, and H. Zhang, “Compressed sensing based on dictionary learning for extracting impulse components,” Signal Process. 96, 94–109 (2014), special issue on Time-Frequency Methods for Condition Based Maintenance and Modal Analysis.
[Crossref]

Lim, Y.

A. Rakić, T. Taimre, K. Bertling, Y. Lim, P. Dean, A. Valavanis, and D. Indjin, “Sensing and imaging using laser feedback interferometry with quantum cascade lasers,” Appl. Phys. Rev. 6, 021320 (2019).
[Crossref]

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. Lim, R. Alhathlool, A. Burnett, L. Li, S. Khanna, and D. Indjin, “Terahertz imaging using quantum cascade lasers—a review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Lim, Y. L.

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Höfling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photon. 7, 570–631 (2015).
[Crossref]

R. Kliese, T. Taimre, A. A. A. Bakar, Y. L. Lim, K. Bertling, M. Nikolić, J. Perchoux, T. Bosch, and A. D. Rakić, “Solving self-mixing equations for arbitrary feedback levels: a concise algorithm,” Appl. Opt. 53, 3723–3736 (2014).
[Crossref]

Y. L. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Biomed. Opt. Express 5, 3981–3989 (2014).
[Crossref]

A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, P. Dean, D. Indjin, Z. Ikonić, P. Harrison, A. Valavanis, S. P. Khanna, M. Lachab, S. J. Wilson, E. H. Linfield, and A. G. Davies, “Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis,” Opt. Express 21, 22194–22205 (2013).
[Crossref]

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).
[Crossref]

P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, and A. G. Davie, “Terahertz imaging through self-mixing in a quantum cascade laser,” Opt. Lett. 36, 2587–2589 (2011).
[Crossref]

R. Kliese, Y. L. Lim, T. Bosch, and A. D. Rakić, “GAN laser self-mixing velocimeter for measuring slow flows,” Opt. Lett. 35, 814–816 (2010).
[Crossref]

J. R. Tucker, J. L. Baque, Y. L. Lim, A. V. Zvyagin, and A. D. Rakić, “Parallel self-mixing imaging system based on an array of vertical-cavity surface-emitting lasers,” Appl. Opt. 46, 6237–6246 (2007).
[Crossref]

K. Singh, A. Bandyopadhyay, K. Bertling, Y. L. Lim, T. Gillespie, A. Robinson, D. Indjin, Y. Han, L. Li, E. H. Linfield, A. G. Davies, P. Dean, A. D. Rakic, and A. Sengupta, “Monitoring water dynamics in plants using laser feedback interferometry,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, 2020), paper C12B_4.

Linfield, E. H.

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).
[Crossref]

Y. L. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Biomed. Opt. Express 5, 3981–3989 (2014).
[Crossref]

A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, P. Dean, D. Indjin, Z. Ikonić, P. Harrison, A. Valavanis, S. P. Khanna, M. Lachab, S. J. Wilson, E. H. Linfield, and A. G. Davies, “Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis,” Opt. Express 21, 22194–22205 (2013).
[Crossref]

P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, and A. G. Davie, “Terahertz imaging through self-mixing in a quantum cascade laser,” Opt. Lett. 36, 2587–2589 (2011).
[Crossref]

K. Singh, A. Bandyopadhyay, K. Bertling, Y. L. Lim, T. Gillespie, A. Robinson, D. Indjin, Y. Han, L. Li, E. H. Linfield, A. G. Davies, P. Dean, A. D. Rakic, and A. Sengupta, “Monitoring water dynamics in plants using laser feedback interferometry,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, 2020), paper C12B_4.

Loubiere, K.

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).
[Crossref]

Lu, Y.

Maciel, N.

E. Crespo Marques, N. Maciel, L. Naviner, H. Cai, and J. Yang, “A review of sparse recovery algorithms,” IEEE Access 7, 1300–1322 (2019).
[Crossref]

Malkin, R.

Mezzapesa, F.

F. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, M. Vitiello, and G. Scamarcio, “Imaging of free carriers in semiconductors via optical feedback in terahertz quantum cascade lasers,” Appl. Phys. Lett. 104, 041112 (2014).
[Crossref]

F. Mezzapesa, M. Petruzzella, M. Dabbicco, H. Beere, D. Ritchie, M. Vitiello, and G. Scamarcio, “Continuous-wave reflection imaging using optical feedback interferometry in terahertz and mid-infrared quantum cascade lasers,” IEEE Trans. Terahertz Sci. Technol. 4, 631–633 (2014).
[Crossref]

Mezzapesa, F. P.

M. Brambilla, L. L. Columbo, M. Dabbicco, F. De Lucia, F. P. Mezzapesa, and G. Scamarcio, “Versatile multimodality imaging system based on detectorless and scanless optical feedback interferometry—a retrospective overview for a prospective vision,” Sensors 20, 5930 (2020).
[Crossref]

Mitrofanov, O.

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).
[Crossref]

Mittleman, D. M.

Naviner, L.

E. Crespo Marques, N. Maciel, L. Naviner, H. Cai, and J. Yang, “A review of sparse recovery algorithms,” IEEE Access 7, 1300–1322 (2019).
[Crossref]

Neil, M.

B. Boruah and M. Neil, “Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam,” Rev. Sci. Instrum. 80, 013705 (2009).
[Crossref]

Nikolic, M.

O’Neill, M. P.

Osborne, L. C.

Padgett, M. J.

M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13, 13–20 (2019).
[Crossref]

Park, Y.

K. Lee and Y. Park, “Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor,” Nat. Commun. 7, 13359 (2016).
[Crossref]

Perchoux, J.

R. Kliese, T. Taimre, A. A. A. Bakar, Y. L. Lim, K. Bertling, M. Nikolić, J. Perchoux, T. Bosch, and A. D. Rakić, “Solving self-mixing equations for arbitrary feedback levels: a concise algorithm,” Appl. Opt. 53, 3723–3736 (2014).
[Crossref]

K. Bertling, J. Perchoux, T. Taimre, R. Malkin, D. Robert, A. D. Rakić, and T. Bosch, “Imaging of acoustic fields using optical feedback interferometry,” Opt. Express 22, 30346–30356 (2014).
[Crossref]

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).
[Crossref]

D. Flores, A. Quotb, C. Tronche, F. Jayat, L. Trojman, and J. Perchoux, “Optical feedback interferometry imaging sensor for micrometric flow-patterns using continuous scanning,” in IEEE Sensors (IEEE, 2019), pp. 1–4.

Petruzzella, M.

F. Mezzapesa, M. Petruzzella, M. Dabbicco, H. Beere, D. Ritchie, M. Vitiello, and G. Scamarcio, “Continuous-wave reflection imaging using optical feedback interferometry in terahertz and mid-infrared quantum cascade lasers,” IEEE Trans. Terahertz Sci. Technol. 4, 631–633 (2014).
[Crossref]

Prat, L.

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).
[Crossref]

Prow, T. W.

Quotb, A.

D. Flores, A. Quotb, C. Tronche, F. Jayat, L. Trojman, and J. Perchoux, “Optical feedback interferometry imaging sensor for micrometric flow-patterns using continuous scanning,” in IEEE Sensors (IEEE, 2019), pp. 1–4.

Rakic, A.

A. Rakić, T. Taimre, K. Bertling, Y. Lim, P. Dean, A. Valavanis, and D. Indjin, “Sensing and imaging using laser feedback interferometry with quantum cascade lasers,” Appl. Phys. Rev. 6, 021320 (2019).
[Crossref]

Rakic, A. D.

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Höfling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photon. 7, 570–631 (2015).
[Crossref]

R. Kliese, T. Taimre, A. A. A. Bakar, Y. L. Lim, K. Bertling, M. Nikolić, J. Perchoux, T. Bosch, and A. D. Rakić, “Solving self-mixing equations for arbitrary feedback levels: a concise algorithm,” Appl. Opt. 53, 3723–3736 (2014).
[Crossref]

K. Bertling, J. Perchoux, T. Taimre, R. Malkin, D. Robert, A. D. Rakić, and T. Bosch, “Imaging of acoustic fields using optical feedback interferometry,” Opt. Express 22, 30346–30356 (2014).
[Crossref]

Y. L. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Biomed. Opt. Express 5, 3981–3989 (2014).
[Crossref]

A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, P. Dean, D. Indjin, Z. Ikonić, P. Harrison, A. Valavanis, S. P. Khanna, M. Lachab, S. J. Wilson, E. H. Linfield, and A. G. Davies, “Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis,” Opt. Express 21, 22194–22205 (2013).
[Crossref]

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).
[Crossref]

P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, and A. G. Davie, “Terahertz imaging through self-mixing in a quantum cascade laser,” Opt. Lett. 36, 2587–2589 (2011).
[Crossref]

R. Kliese, Y. L. Lim, T. Bosch, and A. D. Rakić, “GAN laser self-mixing velocimeter for measuring slow flows,” Opt. Lett. 35, 814–816 (2010).
[Crossref]

J. R. Tucker, J. L. Baque, Y. L. Lim, A. V. Zvyagin, and A. D. Rakić, “Parallel self-mixing imaging system based on an array of vertical-cavity surface-emitting lasers,” Appl. Opt. 46, 6237–6246 (2007).
[Crossref]

K. Singh, A. Bandyopadhyay, K. Bertling, Y. L. Lim, T. Gillespie, A. Robinson, D. Indjin, Y. Han, L. Li, E. H. Linfield, A. G. Davies, P. Dean, A. D. Rakic, and A. Sengupta, “Monitoring water dynamics in plants using laser feedback interferometry,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, 2020), paper C12B_4.

Rauhut, H.

H. Rauhut, “Compressive sensing and structured random matrices,” Theor. Found. Numer. Methods Sparse Recovery 9, 1–92 (2010).

Rea, N.

Redding, B.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref]

Ritchie, D.

F. Mezzapesa, M. Petruzzella, M. Dabbicco, H. Beere, D. Ritchie, M. Vitiello, and G. Scamarcio, “Continuous-wave reflection imaging using optical feedback interferometry in terahertz and mid-infrared quantum cascade lasers,” IEEE Trans. Terahertz Sci. Technol. 4, 631–633 (2014).
[Crossref]

Robert, D.

Robinson, A.

K. Singh, A. Bandyopadhyay, K. Bertling, Y. L. Lim, T. Gillespie, A. Robinson, D. Indjin, Y. Han, L. Li, E. H. Linfield, A. G. Davies, P. Dean, A. D. Rakic, and A. Sengupta, “Monitoring water dynamics in plants using laser feedback interferometry,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, 2020), paper C12B_4.

Romberg, J.

E. Candes and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23, 969 (2007).
[Crossref]

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[Crossref]

Ruan, H.

Scamarcio, G.

M. Brambilla, L. L. Columbo, M. Dabbicco, F. De Lucia, F. P. Mezzapesa, and G. Scamarcio, “Versatile multimodality imaging system based on detectorless and scanless optical feedback interferometry—a retrospective overview for a prospective vision,” Sensors 20, 5930 (2020).
[Crossref]

F. Mezzapesa, M. Petruzzella, M. Dabbicco, H. Beere, D. Ritchie, M. Vitiello, and G. Scamarcio, “Continuous-wave reflection imaging using optical feedback interferometry in terahertz and mid-infrared quantum cascade lasers,” IEEE Trans. Terahertz Sci. Technol. 4, 631–633 (2014).
[Crossref]

F. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, M. Vitiello, and G. Scamarcio, “Imaging of free carriers in semiconductors via optical feedback in terahertz quantum cascade lasers,” Appl. Phys. Lett. 104, 041112 (2014).
[Crossref]

Schaider, H.

Sengupta, A.

K. Singh, A. Bandyopadhyay, K. Bertling, Y. L. Lim, T. Gillespie, A. Robinson, D. Indjin, Y. Han, L. Li, E. H. Linfield, A. G. Davies, P. Dean, A. D. Rakic, and A. Sengupta, “Monitoring water dynamics in plants using laser feedback interferometry,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, 2020), paper C12B_4.

Singh, K.

K. Singh, A. Bandyopadhyay, K. Bertling, Y. L. Lim, T. Gillespie, A. Robinson, D. Indjin, Y. Han, L. Li, E. H. Linfield, A. G. Davies, P. Dean, A. D. Rakic, and A. Sengupta, “Monitoring water dynamics in plants using laser feedback interferometry,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, 2020), paper C12B_4.

Soyer, H. P.

Taimre, T.

A. Rakić, T. Taimre, K. Bertling, Y. Lim, P. Dean, A. Valavanis, and D. Indjin, “Sensing and imaging using laser feedback interferometry with quantum cascade lasers,” Appl. Phys. Rev. 6, 021320 (2019).
[Crossref]

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Höfling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photon. 7, 570–631 (2015).
[Crossref]

R. Kliese, T. Taimre, A. A. A. Bakar, Y. L. Lim, K. Bertling, M. Nikolić, J. Perchoux, T. Bosch, and A. D. Rakić, “Solving self-mixing equations for arbitrary feedback levels: a concise algorithm,” Appl. Opt. 53, 3723–3736 (2014).
[Crossref]

K. Bertling, J. Perchoux, T. Taimre, R. Malkin, D. Robert, A. D. Rakić, and T. Bosch, “Imaging of acoustic fields using optical feedback interferometry,” Opt. Express 22, 30346–30356 (2014).
[Crossref]

Y. L. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, H. P. Soyer, S. J. Wilson, E. H. Linfield, A. G. Davies, and A. D. Rakić, “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Biomed. Opt. Express 5, 3981–3989 (2014).
[Crossref]

A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, P. Dean, D. Indjin, Z. Ikonić, P. Harrison, A. Valavanis, S. P. Khanna, M. Lachab, S. J. Wilson, E. H. Linfield, and A. G. Davies, “Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis,” Opt. Express 21, 22194–22205 (2013).
[Crossref]

Tan, Y.

Tao, T.

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[Crossref]

Trojman, L.

D. Flores, A. Quotb, C. Tronche, F. Jayat, L. Trojman, and J. Perchoux, “Optical feedback interferometry imaging sensor for micrometric flow-patterns using continuous scanning,” in IEEE Sensors (IEEE, 2019), pp. 1–4.

Tronche, C.

D. Flores, A. Quotb, C. Tronche, F. Jayat, L. Trojman, and J. Perchoux, “Optical feedback interferometry imaging sensor for micrometric flow-patterns using continuous scanning,” in IEEE Sensors (IEEE, 2019), pp. 1–4.

Tucker, J. R.

Usuki, S.

Valavanis, A.

Vitiello, M.

F. Mezzapesa, M. Petruzzella, M. Dabbicco, H. Beere, D. Ritchie, M. Vitiello, and G. Scamarcio, “Continuous-wave reflection imaging using optical feedback interferometry in terahertz and mid-infrared quantum cascade lasers,” IEEE Trans. Terahertz Sci. Technol. 4, 631–633 (2014).
[Crossref]

F. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, M. Vitiello, and G. Scamarcio, “Imaging of free carriers in semiconductors via optical feedback in terahertz quantum cascade lasers,” Appl. Phys. Lett. 104, 041112 (2014).
[Crossref]

von Edlinger, M.

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Höfling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

Weih, R.

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Höfling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

Wilson, S. J.

Wilson, T.

Witomski, A.

Wong, T. L.

Yang, J.

E. Crespo Marques, N. Maciel, L. Naviner, H. Cai, and J. Yang, “A review of sparse recovery algorithms,” IEEE Access 7, 1300–1322 (2019).
[Crossref]

Zhang, H.

X. Chen, Z. Du, J. Li, X. Li, and H. Zhang, “Compressed sensing based on dictionary learning for extracting impulse components,” Signal Process. 96, 94–109 (2014), special issue on Time-Frequency Methods for Condition Based Maintenance and Modal Analysis.
[Crossref]

Zhang, S.

Zhu, K.

Zvyagin, A. V.

Adv. Opt. Photon. (1)

Appl. Opt. (4)

Appl. Phys. Lett. (2)

F. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, M. Vitiello, and G. Scamarcio, “Imaging of free carriers in semiconductors via optical feedback in terahertz quantum cascade lasers,” Appl. Phys. Lett. 104, 041112 (2014).
[Crossref]

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. G. Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).
[Crossref]

Appl. Phys. Rev. (1)

A. Rakić, T. Taimre, K. Bertling, Y. Lim, P. Dean, A. Valavanis, and D. Indjin, “Sensing and imaging using laser feedback interferometry with quantum cascade lasers,” Appl. Phys. Rev. 6, 021320 (2019).
[Crossref]

Biomed. Opt. Express (1)

IEEE Access (1)

E. Crespo Marques, N. Maciel, L. Naviner, H. Cai, and J. Yang, “A review of sparse recovery algorithms,” IEEE Access 7, 1300–1322 (2019).
[Crossref]

IEEE Sens. J. (1)

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Höfling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

IEEE Trans. Inf. Theory (1)

E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

F. Mezzapesa, M. Petruzzella, M. Dabbicco, H. Beere, D. Ritchie, M. Vitiello, and G. Scamarcio, “Continuous-wave reflection imaging using optical feedback interferometry in terahertz and mid-infrared quantum cascade lasers,” IEEE Trans. Terahertz Sci. Technol. 4, 631–633 (2014).
[Crossref]

Inverse Probl. (1)

E. Candes and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl. 23, 969 (2007).
[Crossref]

J. Phys. D (1)

P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. Lim, R. Alhathlool, A. Burnett, L. Li, S. Khanna, and D. Indjin, “Terahertz imaging using quantum cascade lasers—a review of systems and applications,” J. Phys. D 47, 374008 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J.-B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined vertical-cavity surface-emitting laser,” Jpn. J. Appl. Phys. 42, L1469 (2003).
[Crossref]

Microfluid. Nanofluid. (1)

L. Campagnolo, M. Nikolić, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubiere, L. Prat, A. D. Rakić, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013).
[Crossref]

Nat. Commun. (1)

K. Lee and Y. Park, “Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor,” Nat. Commun. 7, 13359 (2016).
[Crossref]

Nat. Photonics (2)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref]

M. P. Edgar, G. M. Gibson, and M. J. Padgett, “Principles and prospects for single-pixel imaging,” Nat. Photonics 13, 13–20 (2019).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (1)

M. Dabbicco and G. Colafemmina, “Multi-wavelength imaging of tissue phantoms by optical feedback interferometry,” Proc. SPIE 10891, 108910W (2019).
[Crossref]

Rev. Sci. Instrum. (1)

B. Boruah and M. Neil, “Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam,” Rev. Sci. Instrum. 80, 013705 (2009).
[Crossref]

Sensors (1)

M. Brambilla, L. L. Columbo, M. Dabbicco, F. De Lucia, F. P. Mezzapesa, and G. Scamarcio, “Versatile multimodality imaging system based on detectorless and scanless optical feedback interferometry—a retrospective overview for a prospective vision,” Sensors 20, 5930 (2020).
[Crossref]

Signal Process. (1)

X. Chen, Z. Du, J. Li, X. Li, and H. Zhang, “Compressed sensing based on dictionary learning for extracting impulse components,” Signal Process. 96, 94–109 (2014), special issue on Time-Frequency Methods for Condition Based Maintenance and Modal Analysis.
[Crossref]

Telecommun. Syst. (1)

Q. Huynh-Thu and M. Ghanbari, “The accuracy of PSNR in predicting video quality for different video scenes and frame rates,” Telecommun. Syst. 49, 35–48 (2012).
[Crossref]

Theor. Found. Numer. Methods Sparse Recovery (1)

H. Rauhut, “Compressive sensing and structured random matrices,” Theor. Found. Numer. Methods Sparse Recovery 9, 1–92 (2010).

Other (3)

A. Domahidi, E. Chu, and S. Boyd, “ECOS: an SOCP solver for embedded systems,” in European Control Conference (ECC) (2013), pp. 3071–3076.

K. Singh, A. Bandyopadhyay, K. Bertling, Y. L. Lim, T. Gillespie, A. Robinson, D. Indjin, Y. Han, L. Li, E. H. Linfield, A. G. Davies, P. Dean, A. D. Rakic, and A. Sengupta, “Monitoring water dynamics in plants using laser feedback interferometry,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, 2020), paper C12B_4.

D. Flores, A. Quotb, C. Tronche, F. Jayat, L. Trojman, and J. Perchoux, “Optical feedback interferometry imaging sensor for micrometric flow-patterns using continuous scanning,” in IEEE Sensors (IEEE, 2019), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematics of a one-pixel camera. Light reflected from the target (a) is partially blocked when passing through one of several spatially modulated patterns (b). The light is then collected through a lens (c) into a single pixel detector (d), which records only the total intensity.
Fig. 2.
Fig. 2. Three-mirror model. ${M_1}$ is considered a perfect mirror (${R_1} = 1$), ${M_2}$ is the laser output mirror characterized by the reflectivity ${R_2}$, and the target has reflectivity $R$.
Fig. 3.
Fig. 3. Demonstration of the proposed imaging solution. The original ${80\times 80}$ black-and-white image (a) has been reconstructed (b) from 1000 simulated OFI measures (${\rm PSNR} = {9.3}\;{\rm dB}$). Note that no post-processing has been applied to image (b) after the reconstruction.
Fig. 4.
Fig. 4. PSNR versus number of simulated measures for three different kinds of $5 \times 10$ target images. From top to bottom: absorptive bar on a reflective background, square reflective target on absorptive background, and round absorptive target on reflective background. The blue lines represent the average over 10 different random sequences whose standard deviation is shadowed. Insets: results of one of the 10 random sequences of 150 measures (left-hand) and 2000 measures (right-hand); central insets represent the targets employed for the simulated measurements.
Fig. 5.
Fig. 5. Experimental setup of the optical feedback single-pixel camera. The source is a 10 mW laser diode emitting at 650 nm, which includes a collimator lens (not shown, focal length: 11 mm). The first couple of (drawn) lenses constitutes a beam expander, while the second one constitutes a $4f$ imaging system (${f_1} = 50\;{\rm mm} $, ${f_2} = 150\;{\rm mm} $, $f = 25.4\;{\rm mm} $).
Fig. 6.
Fig. 6. Mask used for the experiment. White pixels are set transparent, while black pixels are set opaque. The black part surrounding the mask is the non-responsive region.
Fig. 7.
Fig. 7. From left to right: three image reconstructions from experimental data employing 30, 100, and 150 measures, respectively, an image obtained from numerical simulation employing 150 simulated measures, and the picture of the actual target. For each reconstruction, the image histogram has been normalized, and the pixel count has been quadrupled via interpolation (each pixel corresponds to a $60\,\,\unicode{x00B5}{\rm m} \times 60\,\,\unicode{x00B5}{\rm m}$ area on the target). No other post-processing was applied.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ F B ϕ S + C sin ( ϕ F B + a r c t a n α ) = 0.
C = ε ( 1 R 2 ) R R 2 τ e x t τ i n t 1 + α 2 ,
x ^ = min x A x b 2 2 + x 1 ,
A i , j = I D C T 2 ( e j ) , m a s k i ,

Metrics