Abstract

Digital holography (DH) with two wavelengths (TW) that are close to each other was applied to height measurement of solder bumps having spherical specular surfaces with diameters of ${\sim}{20}\;\unicode{x00B5}{\rm m}$ and heights of ${\sim}{20}\;\unicode{x00B5}{\rm m}$. We employed the parallel phase shifting method for instantaneous image capturing, and we improved the spatial resolution of our TW-DH system having two beams with different wavelengths that traveled in opposite directions in the interferometer. It gave 74-times higher repetition and 2.4-times higher spatial resolution than those in our previous DH system based on the Fourier transform method.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Parallel two-step phase-shifting digital holography

Yasuhiro Awatsuji, Tatsuki Tahara, Atsushi Kaneko, Takamasa Koyama, Kenzo Nishio, Shogo Ura, Toshihiro Kubota, and Osamu Matoba
Appl. Opt. 47(19) D183-D189 (2008)

Step height measurement using two-wavelength phase-shifting interferometry

Katherine Creath
Appl. Opt. 26(14) 2810-2816 (1987)

Parallel phase-shifting color digital holography using two phase shifts

Takashi Kakue, Tatsuki Tahara, Kenichi Ito, Yuki Shimozato, Yasuhiro Awatsuji, Kenzo Nishio, Shogo Ura, Toshihiro Kubota, and Osamu Matoba
Appl. Opt. 48(34) H244-H250 (2009)

References

  • View by:
  • |
  • |
  • |

  1. B. Nilsson and T. E. Carlsson, “Direct three-dimensional shape measurement by digital light-in-flight holography,” Appl. Opt. 37, 7954–7959 (1998).
    [Crossref]
  2. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
    [Crossref]
  3. P. Xia, S. Ri, Q. Wang, and H. Tsuda, “Nanometer-order thermal deformation measurement by a calibrated phase-shifting digital holography system,” Opt. Express 26, 12594–12604 (2018).
    [Crossref]
  4. M. Servin, J. L. Marroquin, D. Malacara, and F. J. Cuevas, “Phase unwrapping with a regularized phase-tracking system,” Appl. Opt. 37, 1917–1923 (1998).
    [Crossref]
  5. H. Abdul-Rahman, M. Gdeisat, D. Burton, M. Lalor, F. Lilley, and C. Moore, “Fast and robust three-dimensional best path phase unwrapping algorithm,” Appl. Opt. 46, 6623–6635 (2007).
    [Crossref]
  6. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
    [Crossref]
  7. U. Kumar, B. Bhaduri, M. Kothiyal, and N. K. Mohan, “Two-wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009).
    [Crossref]
  8. D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107–117 (1994).
    [Crossref]
  9. Y. Hayasaki, “Achromatic-phase-shifting low-coherence digital holography: theoretical analyses of zero-phase-shifting error condition and linear and nonlinear calibrations,” Opt. Rev. 22, 731–735 (2015).
    [Crossref]
  10. C. Mann, P. Bingham, V. Paquit, and K. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008).
    [Crossref]
  11. A. Safrani and I. Abdulhalim, “High-speed 3D imaging using two-wavelength parallel-phase-shift interferometry,” Opt. Lett. 40, 4651–4654 (2015).
    [Crossref]
  12. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
    [Crossref]
  13. Y. Awatsuji, T. Koyama, T. Tahara, K. Ito, Y. Shimozato, A. Kaneko, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel optical-path-length-shifting digital holography,” Appl. Opt. 48, H160–H167 (2009).
    [Crossref]
  14. T. Thong-On, T. Prakobsang, W. Pethsanthad, C. Boonsri, S. Plaipichit, P. Buranasiri, and K. Yoshimori, “The investigation of thermal effect on dynamical shape changing of solder paste by using double-view digital holography,” Proc. SPIE 9659, 965912 (2015).
    [Crossref]
  15. S. Kuwamura and I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement,” Appl. Opt. 36, 4473–4482 (1997).
    [Crossref]
  16. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [Crossref]
  17. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref]
  18. S. Jeon, J. Cho, J. Jin, and N. Park, “Dual-wavelength digital holography with a single low-coherence light source,” Opt. Express 24, 18408–18416 (2016).
    [Crossref]
  19. Y. Wan, T. Mana, F. Wu, M. K. Kim, and D. Wang, “Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing,” Opt. Laser Eng. 86, 38–43 (2016).
    [Crossref]
  20. Z. Wang and Y. Yang, “Single-shot three-dimensional reconstruction based on structured light line pattern,” Opt. Laser Eng. 106, 10–16 (2018).
    [Crossref]
  21. Z. Dong and Z. Chen, “Advanced Fourier transform analysis method for phase retrieval from a single-shot spatial carrier fringe pattern,” Opt. Laser Eng. 107, 149–160 (2018).
    [Crossref]
  22. H. Ishigaki, T. Mamiya, and Y. Hayasaki, “Digital holography with a set of two close wavelengths for height measurement of solder bumps,” Jpn. J. Appl. Phys. 59, SOOE03 (2020).
    [Crossref]
  23. Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45, 968–974 (2006).
    [Crossref]
  24. T. Kakue, Y. Moritani, K. Ito, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Image quality improvement of parallel four-step phase-shifting digital holography by using the algorithm of parallel two-step phase-shifting digital holography,” Opt. Express 18, 9555–9560 (2010).
    [Crossref]
  25. T. Tahara, K. Ito, M. Fujii, T. Kakue, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Experimental demonstration of parallel two-step phase-shifting digital holography,” Opt. Express 18, 18975–18980 (2010).
    [Crossref]
  26. M. Lin, K. Nitta, O. Matoba, and Y. Awatsuji, “Parallel phase-shifting digital holography with adaptive function using phase-mode spatial light modulator,” Appl. Opt. 51, 2633–2637 (2012).
    [Crossref]
  27. Y. B. Seo, H. B. Jeong, H. G. Rhee, Y. S. Ghim, and K. N. Joo, “Single-shot freeform surface profiler,” Opt. Express 28, 3401–3409 (2020).
    [Crossref]
  28. Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069–1071 (2004).
    [Crossref]
  29. P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Performance comparison of bilinear interpolation, bicubic interpolation, and B-spline interpolation in parallel phase-shifting digital holography,” Opt. Rev. 20, 193–197 (2013).
    [Crossref]
  30. J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
    [Crossref]
  31. D. Malacara, Optical Shop Testing (Wiley, 2007), pp. 547–596.
  32. D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Wiley, 2005.), pp. 259–281.
  33. M. P. Kothiyal and C. Delisle, “Shearing interferometer for phase shifting interferometry with polarization phase shifter,” Appl. Opt. 24, 4439–4442 (1985).
    [Crossref]
  34. S. Tamano, M. Otaka, and Y. Hayasaki, “Two-wavelength phase-shifting low-coherence digital holography,” Jpn. J. Appl. Phys. 47, 8844–8847 (2008).
    [Crossref]

2020 (2)

H. Ishigaki, T. Mamiya, and Y. Hayasaki, “Digital holography with a set of two close wavelengths for height measurement of solder bumps,” Jpn. J. Appl. Phys. 59, SOOE03 (2020).
[Crossref]

Y. B. Seo, H. B. Jeong, H. G. Rhee, Y. S. Ghim, and K. N. Joo, “Single-shot freeform surface profiler,” Opt. Express 28, 3401–3409 (2020).
[Crossref]

2018 (3)

Z. Wang and Y. Yang, “Single-shot three-dimensional reconstruction based on structured light line pattern,” Opt. Laser Eng. 106, 10–16 (2018).
[Crossref]

Z. Dong and Z. Chen, “Advanced Fourier transform analysis method for phase retrieval from a single-shot spatial carrier fringe pattern,” Opt. Laser Eng. 107, 149–160 (2018).
[Crossref]

P. Xia, S. Ri, Q. Wang, and H. Tsuda, “Nanometer-order thermal deformation measurement by a calibrated phase-shifting digital holography system,” Opt. Express 26, 12594–12604 (2018).
[Crossref]

2016 (2)

S. Jeon, J. Cho, J. Jin, and N. Park, “Dual-wavelength digital holography with a single low-coherence light source,” Opt. Express 24, 18408–18416 (2016).
[Crossref]

Y. Wan, T. Mana, F. Wu, M. K. Kim, and D. Wang, “Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing,” Opt. Laser Eng. 86, 38–43 (2016).
[Crossref]

2015 (3)

Y. Hayasaki, “Achromatic-phase-shifting low-coherence digital holography: theoretical analyses of zero-phase-shifting error condition and linear and nonlinear calibrations,” Opt. Rev. 22, 731–735 (2015).
[Crossref]

A. Safrani and I. Abdulhalim, “High-speed 3D imaging using two-wavelength parallel-phase-shift interferometry,” Opt. Lett. 40, 4651–4654 (2015).
[Crossref]

T. Thong-On, T. Prakobsang, W. Pethsanthad, C. Boonsri, S. Plaipichit, P. Buranasiri, and K. Yoshimori, “The investigation of thermal effect on dynamical shape changing of solder paste by using double-view digital holography,” Proc. SPIE 9659, 965912 (2015).
[Crossref]

2013 (1)

P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Performance comparison of bilinear interpolation, bicubic interpolation, and B-spline interpolation in parallel phase-shifting digital holography,” Opt. Rev. 20, 193–197 (2013).
[Crossref]

2012 (1)

2010 (3)

2009 (2)

Y. Awatsuji, T. Koyama, T. Tahara, K. Ito, Y. Shimozato, A. Kaneko, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel optical-path-length-shifting digital holography,” Appl. Opt. 48, H160–H167 (2009).
[Crossref]

U. Kumar, B. Bhaduri, M. Kothiyal, and N. K. Mohan, “Two-wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009).
[Crossref]

2008 (2)

C. Mann, P. Bingham, V. Paquit, and K. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008).
[Crossref]

S. Tamano, M. Otaka, and Y. Hayasaki, “Two-wavelength phase-shifting low-coherence digital holography,” Jpn. J. Appl. Phys. 47, 8844–8847 (2008).
[Crossref]

2007 (2)

2006 (1)

2004 (2)

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069–1071 (2004).
[Crossref]

1999 (1)

1998 (2)

1997 (2)

1994 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

1985 (1)

Abdulhalim, I.

Abdul-Rahman, H.

Awatsuji, Y.

P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Performance comparison of bilinear interpolation, bicubic interpolation, and B-spline interpolation in parallel phase-shifting digital holography,” Opt. Rev. 20, 193–197 (2013).
[Crossref]

M. Lin, K. Nitta, O. Matoba, and Y. Awatsuji, “Parallel phase-shifting digital holography with adaptive function using phase-mode spatial light modulator,” Appl. Opt. 51, 2633–2637 (2012).
[Crossref]

T. Kakue, Y. Moritani, K. Ito, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Image quality improvement of parallel four-step phase-shifting digital holography by using the algorithm of parallel two-step phase-shifting digital holography,” Opt. Express 18, 9555–9560 (2010).
[Crossref]

T. Tahara, K. Ito, M. Fujii, T. Kakue, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Experimental demonstration of parallel two-step phase-shifting digital holography,” Opt. Express 18, 18975–18980 (2010).
[Crossref]

Y. Awatsuji, T. Koyama, T. Tahara, K. Ito, Y. Shimozato, A. Kaneko, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel optical-path-length-shifting digital holography,” Appl. Opt. 48, H160–H167 (2009).
[Crossref]

Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45, 968–974 (2006).
[Crossref]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069–1071 (2004).
[Crossref]

Bevilacqua, F.

Bhaduri, B.

U. Kumar, B. Bhaduri, M. Kothiyal, and N. K. Mohan, “Two-wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009).
[Crossref]

Bingham, P.

Boonsri, C.

T. Thong-On, T. Prakobsang, W. Pethsanthad, C. Boonsri, S. Plaipichit, P. Buranasiri, and K. Yoshimori, “The investigation of thermal effect on dynamical shape changing of solder paste by using double-view digital holography,” Proc. SPIE 9659, 965912 (2015).
[Crossref]

Brock, N.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

Buranasiri, P.

T. Thong-On, T. Prakobsang, W. Pethsanthad, C. Boonsri, S. Plaipichit, P. Buranasiri, and K. Yoshimori, “The investigation of thermal effect on dynamical shape changing of solder paste by using double-view digital holography,” Proc. SPIE 9659, 965912 (2015).
[Crossref]

Burton, D.

Carlsson, T. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Charrière, F.

Chen, Z.

Z. Dong and Z. Chen, “Advanced Fourier transform analysis method for phase retrieval from a single-shot spatial carrier fringe pattern,” Opt. Laser Eng. 107, 149–160 (2018).
[Crossref]

Cho, J.

Colomb, T.

Cuche, E.

Cuevas, F. J.

Delisle, C.

Depeursinge, C.

Dong, Z.

Z. Dong and Z. Chen, “Advanced Fourier transform analysis method for phase retrieval from a single-shot spatial carrier fringe pattern,” Opt. Laser Eng. 107, 149–160 (2018).
[Crossref]

Emery, Y.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Fujii, A.

Fujii, M.

Gdeisat, M.

Ghiglia, D. C.

Ghim, Y. S.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Hayasaki, Y.

H. Ishigaki, T. Mamiya, and Y. Hayasaki, “Digital holography with a set of two close wavelengths for height measurement of solder bumps,” Jpn. J. Appl. Phys. 59, SOOE03 (2020).
[Crossref]

Y. Hayasaki, “Achromatic-phase-shifting low-coherence digital holography: theoretical analyses of zero-phase-shifting error condition and linear and nonlinear calibrations,” Opt. Rev. 22, 731–735 (2015).
[Crossref]

S. Tamano, M. Otaka, and Y. Hayasaki, “Two-wavelength phase-shifting low-coherence digital holography,” Jpn. J. Appl. Phys. 47, 8844–8847 (2008).
[Crossref]

Hayes, J.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Ishigaki, H.

H. Ishigaki, T. Mamiya, and Y. Hayasaki, “Digital holography with a set of two close wavelengths for height measurement of solder bumps,” Jpn. J. Appl. Phys. 59, SOOE03 (2020).
[Crossref]

Ito, K.

Jeon, S.

Jeong, H. B.

Jin, J.

Joo, K. N.

Kakue, T.

Kaneko, A.

Kim, M. K.

Y. Wan, T. Mana, F. Wu, M. K. Kim, and D. Wang, “Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing,” Opt. Laser Eng. 86, 38–43 (2016).
[Crossref]

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
[Crossref]

Kothiyal, M.

U. Kumar, B. Bhaduri, M. Kothiyal, and N. K. Mohan, “Two-wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009).
[Crossref]

Kothiyal, M. P.

Koyama, T.

Kubota, T.

Kühn, J.

Kumar, U.

U. Kumar, B. Bhaduri, M. Kothiyal, and N. K. Mohan, “Two-wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009).
[Crossref]

Kuwamura, S.

Lalor, M.

Lilley, F.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Lin, M.

Malacara, D.

M. Servin, J. L. Marroquin, D. Malacara, and F. J. Cuevas, “Phase unwrapping with a regularized phase-tracking system,” Appl. Opt. 37, 1917–1923 (1998).
[Crossref]

D. Malacara, Optical Shop Testing (Wiley, 2007), pp. 547–596.

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Wiley, 2005.), pp. 259–281.

Malacara, Z.

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Wiley, 2005.), pp. 259–281.

Mamiya, T.

H. Ishigaki, T. Mamiya, and Y. Hayasaki, “Digital holography with a set of two close wavelengths for height measurement of solder bumps,” Jpn. J. Appl. Phys. 59, SOOE03 (2020).
[Crossref]

Mana, T.

Y. Wan, T. Mana, F. Wu, M. K. Kim, and D. Wang, “Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing,” Opt. Laser Eng. 86, 38–43 (2016).
[Crossref]

Mann, C.

Marquet, P.

Marroquin, J. L.

Matoba, O.

Millerd, J.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

Mohan, N. K.

U. Kumar, B. Bhaduri, M. Kothiyal, and N. K. Mohan, “Two-wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009).
[Crossref]

Montfort, F.

Moore, C.

Moritani, Y.

Nilsson, B.

Nishio, K.

Nitta, K.

North-Morris, M.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

Novak, M.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

Otaka, M.

S. Tamano, M. Otaka, and Y. Hayasaki, “Two-wavelength phase-shifting low-coherence digital holography,” Jpn. J. Appl. Phys. 47, 8844–8847 (2008).
[Crossref]

Paquit, V.

Park, N.

Pethsanthad, W.

T. Thong-On, T. Prakobsang, W. Pethsanthad, C. Boonsri, S. Plaipichit, P. Buranasiri, and K. Yoshimori, “The investigation of thermal effect on dynamical shape changing of solder paste by using double-view digital holography,” Proc. SPIE 9659, 965912 (2015).
[Crossref]

Plaipichit, S.

T. Thong-On, T. Prakobsang, W. Pethsanthad, C. Boonsri, S. Plaipichit, P. Buranasiri, and K. Yoshimori, “The investigation of thermal effect on dynamical shape changing of solder paste by using double-view digital holography,” Proc. SPIE 9659, 965912 (2015).
[Crossref]

Prakobsang, T.

T. Thong-On, T. Prakobsang, W. Pethsanthad, C. Boonsri, S. Plaipichit, P. Buranasiri, and K. Yoshimori, “The investigation of thermal effect on dynamical shape changing of solder paste by using double-view digital holography,” Proc. SPIE 9659, 965912 (2015).
[Crossref]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Rhee, H. G.

Ri, S.

Romero, L. A.

Safrani, A.

Sasada, M.

Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45, 968–974 (2006).
[Crossref]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069–1071 (2004).
[Crossref]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Seo, Y. B.

Servin, M.

M. Servin, J. L. Marroquin, D. Malacara, and F. J. Cuevas, “Phase unwrapping with a regularized phase-tracking system,” Appl. Opt. 37, 1917–1923 (1998).
[Crossref]

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Wiley, 2005.), pp. 259–281.

Shimozato, Y.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Tahara, T.

Tamano, S.

S. Tamano, M. Otaka, and Y. Hayasaki, “Two-wavelength phase-shifting low-coherence digital holography,” Jpn. J. Appl. Phys. 47, 8844–8847 (2008).
[Crossref]

Thong-On, T.

T. Thong-On, T. Prakobsang, W. Pethsanthad, C. Boonsri, S. Plaipichit, P. Buranasiri, and K. Yoshimori, “The investigation of thermal effect on dynamical shape changing of solder paste by using double-view digital holography,” Proc. SPIE 9659, 965912 (2015).
[Crossref]

Tobin, K.

Tsuda, H.

Ura, S.

Wan, Y.

Y. Wan, T. Mana, F. Wu, M. K. Kim, and D. Wang, “Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing,” Opt. Laser Eng. 86, 38–43 (2016).
[Crossref]

Wang, D.

Y. Wan, T. Mana, F. Wu, M. K. Kim, and D. Wang, “Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing,” Opt. Laser Eng. 86, 38–43 (2016).
[Crossref]

Wang, Q.

Wang, Z.

Z. Wang and Y. Yang, “Single-shot three-dimensional reconstruction based on structured light line pattern,” Opt. Laser Eng. 106, 10–16 (2018).
[Crossref]

Wu, F.

Y. Wan, T. Mana, F. Wu, M. K. Kim, and D. Wang, “Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing,” Opt. Laser Eng. 86, 38–43 (2016).
[Crossref]

Wyant, J.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

Xia, P.

P. Xia, S. Ri, Q. Wang, and H. Tsuda, “Nanometer-order thermal deformation measurement by a calibrated phase-shifting digital holography system,” Opt. Express 26, 12594–12604 (2018).
[Crossref]

P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Performance comparison of bilinear interpolation, bicubic interpolation, and B-spline interpolation in parallel phase-shifting digital holography,” Opt. Rev. 20, 193–197 (2013).
[Crossref]

Yamaguchi, I.

Yang, Y.

Z. Wang and Y. Yang, “Single-shot three-dimensional reconstruction based on structured light line pattern,” Opt. Laser Eng. 106, 10–16 (2018).
[Crossref]

Yoshimori, K.

T. Thong-On, T. Prakobsang, W. Pethsanthad, C. Boonsri, S. Plaipichit, P. Buranasiri, and K. Yoshimori, “The investigation of thermal effect on dynamical shape changing of solder paste by using double-view digital holography,” Proc. SPIE 9659, 965912 (2015).
[Crossref]

Zhang, T.

Appl. Opt. (8)

Appl. Phys. Lett. (1)

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069–1071 (2004).
[Crossref]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (2)

S. Tamano, M. Otaka, and Y. Hayasaki, “Two-wavelength phase-shifting low-coherence digital holography,” Jpn. J. Appl. Phys. 47, 8844–8847 (2008).
[Crossref]

H. Ishigaki, T. Mamiya, and Y. Hayasaki, “Digital holography with a set of two close wavelengths for height measurement of solder bumps,” Jpn. J. Appl. Phys. 59, SOOE03 (2020).
[Crossref]

Opt. Express (7)

P. Xia, S. Ri, Q. Wang, and H. Tsuda, “Nanometer-order thermal deformation measurement by a calibrated phase-shifting digital holography system,” Opt. Express 26, 12594–12604 (2018).
[Crossref]

Y. B. Seo, H. B. Jeong, H. G. Rhee, Y. S. Ghim, and K. N. Joo, “Single-shot freeform surface profiler,” Opt. Express 28, 3401–3409 (2020).
[Crossref]

T. Kakue, Y. Moritani, K. Ito, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Image quality improvement of parallel four-step phase-shifting digital holography by using the algorithm of parallel two-step phase-shifting digital holography,” Opt. Express 18, 9555–9560 (2010).
[Crossref]

T. Tahara, K. Ito, M. Fujii, T. Kakue, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Experimental demonstration of parallel two-step phase-shifting digital holography,” Opt. Express 18, 18975–18980 (2010).
[Crossref]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref]

C. Mann, P. Bingham, V. Paquit, and K. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008).
[Crossref]

S. Jeon, J. Cho, J. Jin, and N. Park, “Dual-wavelength digital holography with a single low-coherence light source,” Opt. Express 24, 18408–18416 (2016).
[Crossref]

Opt. Laser Eng. (3)

Y. Wan, T. Mana, F. Wu, M. K. Kim, and D. Wang, “Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing,” Opt. Laser Eng. 86, 38–43 (2016).
[Crossref]

Z. Wang and Y. Yang, “Single-shot three-dimensional reconstruction based on structured light line pattern,” Opt. Laser Eng. 106, 10–16 (2018).
[Crossref]

Z. Dong and Z. Chen, “Advanced Fourier transform analysis method for phase retrieval from a single-shot spatial carrier fringe pattern,” Opt. Laser Eng. 107, 149–160 (2018).
[Crossref]

Opt. Lasers Eng. (1)

U. Kumar, B. Bhaduri, M. Kothiyal, and N. K. Mohan, “Two-wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009).
[Crossref]

Opt. Lett. (3)

Opt. Rev. (2)

P. Xia, T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Performance comparison of bilinear interpolation, bicubic interpolation, and B-spline interpolation in parallel phase-shifting digital holography,” Opt. Rev. 20, 193–197 (2013).
[Crossref]

Y. Hayasaki, “Achromatic-phase-shifting low-coherence digital holography: theoretical analyses of zero-phase-shifting error condition and linear and nonlinear calibrations,” Opt. Rev. 22, 731–735 (2015).
[Crossref]

Proc. SPIE (2)

T. Thong-On, T. Prakobsang, W. Pethsanthad, C. Boonsri, S. Plaipichit, P. Buranasiri, and K. Yoshimori, “The investigation of thermal effect on dynamical shape changing of solder paste by using double-view digital holography,” Proc. SPIE 9659, 965912 (2015).
[Crossref]

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

SPIE Rev. (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
[Crossref]

Other (2)

D. Malacara, Optical Shop Testing (Wiley, 2007), pp. 547–596.

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Wiley, 2005.), pp. 259–281.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental setup: (a) optical schematic (b) experimental setup photograph. LS, laser source; IS, image sensor; BS, beam splitter; PBS, polarized BS; QWP, quarter-wave plate; $p$, $p$-wave; $s$, $s$-wave.
Fig. 2.
Fig. 2. Process flow from interference fringe acquisition to height acquisition.
Fig. 3.
Fig. 3. Original images obtained by polarized IS at (a) ${\lambda _1}$ and (b) ${\lambda _2}$. Reproduced amplitude images at (c) ${\lambda _1}$ and (d) ${\lambda _2}$. Reproduced phase images at (e) ${\lambda _1}$ and (f) ${\lambda _2}$.
Fig. 4.
Fig. 4. Masks generated from (a) ${\lambda _1}$ and (b) ${\lambda _2}$ intensity images.
Fig. 5.
Fig. 5. Reconstructed phase image masked by intensity image at (a) ${\lambda _1}$ and (b) ${\lambda _2}$.
Fig. 6.
Fig. 6. Phase image obtained by the TW method.
Fig. 7.
Fig. 7. Cross-sectional shape of solder bump. CLM, confocal laser microscope (Keyence, VK-100); DH, digital holography.

Tables (1)

Tables Icon

Table 1. Comparison of Measurement Systems

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

ϕ o = tan 1 I 0 I π / 2 I π / 4 I 3 π / 4 ,
a o = ( I 0 I π / 2 ) 2 + ( I π / 4 I 3 π / 4 ) 2 4 .
I θ = a o 2 + a r 2 + 2 a o a r cos ( ϕ + 2 θ ) ,
I 0 = a o 2 + a r 2 + 2 a o a r cos ( ϕ + 2 θ 0 ) ,
I π / 4 = a o 2 + a r 2 + 2 a o a r cos ( ϕ + 2 θ π / 4 ) ,
I π / 2 = a o 2 + a r 2 + 2 a o a r cos ( ϕ + 2 θ π / 2 ) ,
I 3 π / 4 = a o 2 + a r 2 + 2 a o a r cos ( ϕ + 2 θ 3 π / 4 ) .
ϕ o = tan 1 ( I π / 4 I 3 π / 4 ) ( sin 2 θ 0 sin 2 θ π / 2 ) + ( I 0 I π / 2 ) ( sin 2 θ π / 4 sin 2 θ 3 π / 4 ) ( I π / 4 I 3 π / 4 ) ( cos 2 θ 0 cos 2 θ π / 2 ) ( I 0 I π / 2 ) ( cos 2 θ π / 4 cos 2 θ 3 π / 4 ) .
a o = I 0 I π / 2 2 { ( cos 2 θ 0 cos 2 θ π / 2 ) cos ϕ o + ( sin 2 θ 0 sin 2 θ π / 2 ) sin ϕ o } .
u o n ( T ) ( x , y ) = a o n ( T ) ( x , y ) exp [ i ϕ o n ( T ) ( x , y ) ] ( n = 1 o r 2 ) .
u o n ( C ) ( x , y ) = a o n ( C ) ( x , y ) exp [ i ϕ o n ( C ) ( x , y ) ] ( n = 1 o r 2 ) .
u o n ( x , y ) = u o n ( T ) ( x , y ) / u o n ( C ) ( x , y ) ( n = 1 o r 2 ) .
M n ( x , y ) = { 1 ( | u o n ( x , y ) | 2 k ) n o d a t a e l s e ,
ϕ n ( x , y ) = M n ( x , y ) [ ϕ n ( T ) ( x , y ) ϕ n ( C ) ( x , y ) ] ( n = 1 o r 2 ) .
Λ = λ 1 λ 2 / ( λ 2 λ 1 ) .
Δ L ( x , y ) = Λ ϕ 1 ( x , y ) ϕ 2 ( x , y ) + 2 π p 2 π ,
ϕ 1 ( x , y ) ϕ 2 ( x , y ) = 4 π Z m i n / Λ .
4 k I C > 2 π ϕ 1 ( x , y ) ϕ 2 ( x , y ) .
k > Λ 8 I C Z m i n .

Metrics