Abstract

A volume holographic (VHG) grating-based multi-plane differential confocal microscopy (DCM) is proposed for axial scan-free imaging. Also, we briefly reviewed our previous works on volume holographic-based confocal imaging. We show that without degrading imaging performance, it is possible to simultaneously obtain two depth-resolved optically sectioned images with improved axial resolution using multi-plane DCM. The performance of our multi-plane DCM was evaluated by measuring the surface profile of a silicon micro-hole array with depths separation around 10 µm. The axial sensitivity of the system is around 25 nm. Our system has the advantages of multi-plane imaging with high axial sensitivity and high optical sectioning ability. Our method can be used for reflective surface profiling and multi-plane fluorescence imaging. The present methods may find important applications in surface metrology for label-free biological samples, as well as industrial applications.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Multiplexed holographic non-axial-scanning slit confocal fluorescence microscopy

Chou-Min Chia, Hung-Chun Wang, J. Andrew Yeh, Dipanjan Bhattacharya, and Yuan Luo
Opt. Express 26(11) 14288-14294 (2018)

Simultaneous multi-color optical sectioning fluorescence microscopy with wavelength-coded volume holographic gratings

Yu-Hsin Chia, J. Andrew Yeh, Yi-You Huang, and Yuan Luo
Opt. Express 28(25) 37177-37187 (2020)

Speckle-based volume holographic microscopy for optically sectioned multi-plane fluorescent imaging

Hsi-Hsun Chen, Vijay Raj Singh, and Yuan Luo
Opt. Express 23(6) 7075-7084 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pawley, Handbook of Biological Confocal Microscopy (Plenum, 1995).
  2. R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59, 427–471 (1996).
    [Crossref]
  3. T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).
  4. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopy (World Scientific, 1996).
  5. C. H. Lee and J. P. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution,” Opt. Commun. 135, 233–237 (1997).
    [Crossref]
  6. L. Liu, X. Deng, and G. Wang, “Phase-only optical pupil filter for improving axial resolution in confocal microscopy,” Acta Phys. Sin. 50, 48–51 (2001).
  7. C. J. R. Sheppard and H. J. Matthews, “The extended-focus auto-focus and surface-profiling techniques of confocal microscopy,” J. Mod. Opt. 35, 145–154 (1988).
    [Crossref]
  8. J. Liu and J. Tan, Confocal Microscopy (Morgan & Claypool, 2016).
  9. S. Vyas, Y. H. Chia, and Y. Luo, “Volume holographic spatial-spectral imaging systems,” J. Opt. Soc. Am. A 36, A47–A58 (2019).
    [Crossref]
  10. G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811–813 (1999).
    [Crossref]
  11. P. H. Wang, V. R. Singh, J. M. Wong, K. B. Sung, and Y. Luo, “Non-axial-scanning multifocal confocal microscopy with multiplexed volume holographic gratings,” Opt. Lett. 42, 346–349 (2017).
    [Crossref]
  12. C. M. Chia, H. C. Wang, J. A. Yeh, D. Bhattacharya, and Y. Luo, “Multiplexed holographic non-axial-scanning slit confocal fluorescence microscopy,” Opt. Express 26, 14288–14294 (2018).
    [Crossref]
  13. T. K. Gaylord and M. G. Moharam, “Thin and thick gratings: terminology clarification,” Appl. Opt. 20, 3271–3273 (1981).
    [Crossref]
  14. G. Barbastathis and D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE 87, 2098–2120 (1999).
    [Crossref]
  15. W. Liu, G. Barbastathis, and D. Psaltis, “Volume holographic hyperspectral imaging,” Appl. Opt. 43, 3581–3599 (2004).
    [Crossref]
  16. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage, Springer Series in Optical Sciences (Springer, 2000), Vol. 76.
  17. Y. Luo, P. J. Gelsinger, J. K. Barton, G. Barbastathis, and R. K. Kostuk, “Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial imaging filters,” Opt. Lett. 33, 566–568 (2008).
    [Crossref]
  18. S. Vyas, P. H. Wang, and Y. Luo, “Spatial mode multiplexing using volume holographic gratings,” Opt. Express 25, 23726–23737 (2017).
    [Crossref]
  19. S. Vyas, Y. H. Chia, and Y. Luo, “Conventional volume holography for unconventional Airy beam shapes,” Opt. Express 26, 21979–21990 (2018).
    [Crossref]
  20. A. Nakano, “Spinning-disk confocal microscopy–a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27, 349–355 (2002).
    [Crossref]
  21. C. J. Koester, “Scanning mirror microscope with optical sectioning characteristics: applications in ophthalmology,” Appl. Opt. 19, 1749–1757 (1980).
    [Crossref]
  22. F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS One 7, e43942 (2012).
    [Crossref]
  23. J. Kim, D. Kang, and D. Gweon, “Spectrally encoded slit confocal microscopy,” Opt. Lett. 31, 1687–1689 (2006).
    [Crossref]
  24. H. Cang, C. S. Xu, D. Montiel, and H. Yang, “Guiding a confocal microscope by single fluorescent nanoparticles,” Opt. Lett. 32, 2729–2731 (2007).
    [Crossref]
  25. S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7, 13349 (2017).
    [Crossref]
  26. C. Sheppard and X. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35, 1169–1185 (1988).
    [Crossref]
  27. B. R. Masters and A. A. Thaer, “Real-time scanning slit confocal microscopy of the in vivo human cornea,” Appl. Opt. 33, 695–701 (1994).
    [Crossref]
  28. M. Hughes and G. Z. Yang, “High speed, line-scanning, fiber bundle fluorescence confocal endomicroscopy for improved mosaicking,” Biomed. Opt. Express 6, 1241–1252 (2015).
    [Crossref]
  29. Z. Yang, L. Mei, F. Xia, Q. Luo, L. Fu, and H. Gong, “Dual-slit confocal light-sheet microscopy for in vivo whole-brain imaging of zebrafish,” Biomed. Opt. Express 6, 1797–1811 (2015).
    [Crossref]
  30. P. J. Dwyer, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal theta line-scanning microscope for imaging human tissues,” Appl. Opt. 46, 1843–1851 (2007).
    [Crossref]
  31. K. B. Im, S. Han, H. Park, D. Kim, and B. M. Kim, “Simple high-speed confocal line-scanning microscope,” Opt. Express 13, 5151–5156 (2005).
    [Crossref]
  32. C.-H. Lee, H.-Y. Mong, and W.-C. Lin, “Noninterferometric wide-field optical profilometry with nanometer depth resolution,” Opt. Lett. 27, 1773–1775 (2002).
    [Crossref]
  33. C. H. Lee, W. C. Lin, and J. Y. Wang, “Using differential confocal microscopy to detect the phase transition of the membrane of giant unilamellar liposomes,” Proc. SPIE 4082, 125–133 (2000).
    [Crossref]
  34. L. Qiu, D. Liu, W. Zhao, H. Cui, and Z. Sheng, “Real-time laser differential confocal microscopy without sample reflectivity effects,” Opt. Express 22, 21626–21640 (2014).
    [Crossref]
  35. W. Zhao, J. Tan, and L. Qiu, “Bipolar absolute differential confocal approach to higher spatial resolution,” Opt. Express 12, 5013–5021 (2004).
    [Crossref]
  36. L. C. Chen, D. H. Duong, and C. S. Chen, “Optical 3-D profilometry for measuring semiconductor wafer surfaces with extremely variant reflectivities,” Appl. Sci. 9, 1–18 (2019).
    [Crossref]
  37. Y. Wang, F. Xie, S. Ma, and L. Dong, “Review of surface profile measurement techniques based on optical interferometry,” Opt. Laser Eng. 93, 164–170 (2017).
    [Crossref]

2019 (2)

S. Vyas, Y. H. Chia, and Y. Luo, “Volume holographic spatial-spectral imaging systems,” J. Opt. Soc. Am. A 36, A47–A58 (2019).
[Crossref]

L. C. Chen, D. H. Duong, and C. S. Chen, “Optical 3-D profilometry for measuring semiconductor wafer surfaces with extremely variant reflectivities,” Appl. Sci. 9, 1–18 (2019).
[Crossref]

2018 (2)

2017 (4)

P. H. Wang, V. R. Singh, J. M. Wong, K. B. Sung, and Y. Luo, “Non-axial-scanning multifocal confocal microscopy with multiplexed volume holographic gratings,” Opt. Lett. 42, 346–349 (2017).
[Crossref]

Y. Wang, F. Xie, S. Ma, and L. Dong, “Review of surface profile measurement techniques based on optical interferometry,” Opt. Laser Eng. 93, 164–170 (2017).
[Crossref]

S. Vyas, P. H. Wang, and Y. Luo, “Spatial mode multiplexing using volume holographic gratings,” Opt. Express 25, 23726–23737 (2017).
[Crossref]

S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7, 13349 (2017).
[Crossref]

2015 (2)

2014 (1)

2012 (1)

F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS One 7, e43942 (2012).
[Crossref]

2008 (1)

2007 (2)

2006 (1)

2005 (1)

2004 (2)

2002 (2)

A. Nakano, “Spinning-disk confocal microscopy–a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27, 349–355 (2002).
[Crossref]

C.-H. Lee, H.-Y. Mong, and W.-C. Lin, “Noninterferometric wide-field optical profilometry with nanometer depth resolution,” Opt. Lett. 27, 1773–1775 (2002).
[Crossref]

2001 (1)

L. Liu, X. Deng, and G. Wang, “Phase-only optical pupil filter for improving axial resolution in confocal microscopy,” Acta Phys. Sin. 50, 48–51 (2001).

2000 (1)

C. H. Lee, W. C. Lin, and J. Y. Wang, “Using differential confocal microscopy to detect the phase transition of the membrane of giant unilamellar liposomes,” Proc. SPIE 4082, 125–133 (2000).
[Crossref]

1999 (2)

G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811–813 (1999).
[Crossref]

G. Barbastathis and D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE 87, 2098–2120 (1999).
[Crossref]

1997 (1)

C. H. Lee and J. P. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution,” Opt. Commun. 135, 233–237 (1997).
[Crossref]

1996 (1)

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59, 427–471 (1996).
[Crossref]

1994 (1)

1988 (2)

C. Sheppard and X. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35, 1169–1185 (1988).
[Crossref]

C. J. R. Sheppard and H. J. Matthews, “The extended-focus auto-focus and surface-profiling techniques of confocal microscopy,” J. Mod. Opt. 35, 145–154 (1988).
[Crossref]

1981 (1)

1980 (1)

Baggett, B. K.

S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7, 13349 (2017).
[Crossref]

Balberg, M.

Barbastathis, G.

Barnes, C. A.

S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7, 13349 (2017).
[Crossref]

Barton, J. K.

Bhattacharya, D.

Brady, D. J.

G. Barbastathis and D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE 87, 2098–2120 (1999).
[Crossref]

G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811–813 (1999).
[Crossref]

Cang, H.

Chawla, M. K.

S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7, 13349 (2017).
[Crossref]

Chen, C. S.

L. C. Chen, D. H. Duong, and C. S. Chen, “Optical 3-D profilometry for measuring semiconductor wafer surfaces with extremely variant reflectivities,” Appl. Sci. 9, 1–18 (2019).
[Crossref]

Chen, L. C.

L. C. Chen, D. H. Duong, and C. S. Chen, “Optical 3-D profilometry for measuring semiconductor wafer surfaces with extremely variant reflectivities,” Appl. Sci. 9, 1–18 (2019).
[Crossref]

Chia, C. M.

Chia, Y. H.

Coufal, H. J.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage, Springer Series in Optical Sciences (Springer, 2000), Vol. 76.

Cui, H.

Deng, X.

L. Liu, X. Deng, and G. Wang, “Phase-only optical pupil filter for improving axial resolution in confocal microscopy,” Acta Phys. Sin. 50, 48–51 (2001).

DiMarzio, C. A.

Dong, L.

Y. Wang, F. Xie, S. Ma, and L. Dong, “Review of surface profile measurement techniques based on optical interferometry,” Opt. Laser Eng. 93, 164–170 (2017).
[Crossref]

Duong, D. H.

L. C. Chen, D. H. Duong, and C. S. Chen, “Optical 3-D profilometry for measuring semiconductor wafer surfaces with extremely variant reflectivities,” Appl. Sci. 9, 1–18 (2019).
[Crossref]

Dwyer, P. J.

Fu, L.

Gaylord, T. K.

Gelsinger, P. J.

Gong, H.

Gu, M.

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopy (World Scientific, 1996).

Gweon, D.

Han, S.

Hartell, N. A.

F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS One 7, e43942 (2012).
[Crossref]

Hughes, M.

Im, K. B.

Kang, D.

Kim, B. M.

Kim, D.

Kim, J.

Koester, C. J.

Kostuk, R. K.

Lee, C. H.

C. H. Lee, W. C. Lin, and J. Y. Wang, “Using differential confocal microscopy to detect the phase transition of the membrane of giant unilamellar liposomes,” Proc. SPIE 4082, 125–133 (2000).
[Crossref]

C. H. Lee and J. P. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution,” Opt. Commun. 135, 233–237 (1997).
[Crossref]

Lee, C.-H.

Liang, R.

S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7, 13349 (2017).
[Crossref]

Lin, W. C.

C. H. Lee, W. C. Lin, and J. Y. Wang, “Using differential confocal microscopy to detect the phase transition of the membrane of giant unilamellar liposomes,” Proc. SPIE 4082, 125–133 (2000).
[Crossref]

Lin, W.-C.

Liu, D.

Liu, J.

J. Liu and J. Tan, Confocal Microscopy (Morgan & Claypool, 2016).

Liu, L.

L. Liu, X. Deng, and G. Wang, “Phase-only optical pupil filter for improving axial resolution in confocal microscopy,” Acta Phys. Sin. 50, 48–51 (2001).

Liu, W.

Luo, Q.

Luo, Y.

Ma, S.

Y. Wang, F. Xie, S. Ma, and L. Dong, “Review of surface profile measurement techniques based on optical interferometry,” Opt. Laser Eng. 93, 164–170 (2017).
[Crossref]

Mao, X.

C. Sheppard and X. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35, 1169–1185 (1988).
[Crossref]

Martial, F. P.

F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS One 7, e43942 (2012).
[Crossref]

Masters, B. R.

Matthews, H. J.

C. J. R. Sheppard and H. J. Matthews, “The extended-focus auto-focus and surface-profiling techniques of confocal microscopy,” J. Mod. Opt. 35, 145–154 (1988).
[Crossref]

Mei, L.

Moharam, M. G.

Mong, H.-Y.

Montiel, D.

Nakano, A.

A. Nakano, “Spinning-disk confocal microscopy–a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27, 349–355 (2002).
[Crossref]

Nguyen, M.

S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7, 13349 (2017).
[Crossref]

Pacheco, S.

S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7, 13349 (2017).
[Crossref]

Park, H.

Pawley, J. B.

J. B. Pawley, Handbook of Biological Confocal Microscopy (Plenum, 1995).

Psaltis, D.

W. Liu, G. Barbastathis, and D. Psaltis, “Volume holographic hyperspectral imaging,” Appl. Opt. 43, 3581–3599 (2004).
[Crossref]

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage, Springer Series in Optical Sciences (Springer, 2000), Vol. 76.

Qiu, L.

Rajadhyaksha, M.

Sheng, Z.

Sheppard, C.

C. Sheppard and X. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35, 1169–1185 (1988).
[Crossref]

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Sheppard, C. J. R.

C. J. R. Sheppard and H. J. Matthews, “The extended-focus auto-focus and surface-profiling techniques of confocal microscopy,” J. Mod. Opt. 35, 145–154 (1988).
[Crossref]

Sincerbox, G. T.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage, Springer Series in Optical Sciences (Springer, 2000), Vol. 76.

Singh, V. R.

Sung, K. B.

Tan, J.

Thaer, A. A.

Utzinger, U.

S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7, 13349 (2017).
[Crossref]

Vyas, S.

Wang, C.

S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7, 13349 (2017).
[Crossref]

Wang, G.

L. Liu, X. Deng, and G. Wang, “Phase-only optical pupil filter for improving axial resolution in confocal microscopy,” Acta Phys. Sin. 50, 48–51 (2001).

Wang, H. C.

Wang, J. P.

C. H. Lee and J. P. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution,” Opt. Commun. 135, 233–237 (1997).
[Crossref]

Wang, J. Y.

C. H. Lee, W. C. Lin, and J. Y. Wang, “Using differential confocal microscopy to detect the phase transition of the membrane of giant unilamellar liposomes,” Proc. SPIE 4082, 125–133 (2000).
[Crossref]

Wang, P. H.

Wang, Y.

Y. Wang, F. Xie, S. Ma, and L. Dong, “Review of surface profile measurement techniques based on optical interferometry,” Opt. Laser Eng. 93, 164–170 (2017).
[Crossref]

Webb, R. H.

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59, 427–471 (1996).
[Crossref]

Wilson, T.

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Wong, J. M.

Xia, F.

Xie, F.

Y. Wang, F. Xie, S. Ma, and L. Dong, “Review of surface profile measurement techniques based on optical interferometry,” Opt. Laser Eng. 93, 164–170 (2017).
[Crossref]

Xu, C. S.

Yang, G. Z.

Yang, H.

Yang, Z.

Yeh, J. A.

Zhao, W.

Acta Phys. Sin. (1)

L. Liu, X. Deng, and G. Wang, “Phase-only optical pupil filter for improving axial resolution in confocal microscopy,” Acta Phys. Sin. 50, 48–51 (2001).

Appl. Opt. (5)

Appl. Sci. (1)

L. C. Chen, D. H. Duong, and C. S. Chen, “Optical 3-D profilometry for measuring semiconductor wafer surfaces with extremely variant reflectivities,” Appl. Sci. 9, 1–18 (2019).
[Crossref]

Biomed. Opt. Express (2)

Cell Struct. Funct. (1)

A. Nakano, “Spinning-disk confocal microscopy–a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27, 349–355 (2002).
[Crossref]

J. Mod. Opt. (2)

C. Sheppard and X. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35, 1169–1185 (1988).
[Crossref]

C. J. R. Sheppard and H. J. Matthews, “The extended-focus auto-focus and surface-profiling techniques of confocal microscopy,” J. Mod. Opt. 35, 145–154 (1988).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

C. H. Lee and J. P. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution,” Opt. Commun. 135, 233–237 (1997).
[Crossref]

Opt. Express (6)

Opt. Laser Eng. (1)

Y. Wang, F. Xie, S. Ma, and L. Dong, “Review of surface profile measurement techniques based on optical interferometry,” Opt. Laser Eng. 93, 164–170 (2017).
[Crossref]

Opt. Lett. (6)

PLoS One (1)

F. P. Martial and N. A. Hartell, “Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror,” PLoS One 7, e43942 (2012).
[Crossref]

Proc. IEEE (1)

G. Barbastathis and D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE 87, 2098–2120 (1999).
[Crossref]

Proc. SPIE (1)

C. H. Lee, W. C. Lin, and J. Y. Wang, “Using differential confocal microscopy to detect the phase transition of the membrane of giant unilamellar liposomes,” Proc. SPIE 4082, 125–133 (2000).
[Crossref]

Rep. Prog. Phys. (1)

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59, 427–471 (1996).
[Crossref]

Sci. Rep. (1)

S. Pacheco, C. Wang, M. K. Chawla, M. Nguyen, B. K. Baggett, U. Utzinger, C. A. Barnes, and R. Liang, “High resolution, high speed, long working distance, large field of view confocal fluorescence microscope,” Sci. Rep. 7, 13349 (2017).
[Crossref]

Other (5)

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopy (World Scientific, 1996).

J. B. Pawley, Handbook of Biological Confocal Microscopy (Plenum, 1995).

J. Liu and J. Tan, Confocal Microscopy (Morgan & Claypool, 2016).

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage, Springer Series in Optical Sciences (Springer, 2000), Vol. 76.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Wave vector diagram for the recording of angularly multiplexed VHGs. The wave vectors of the signal and reference beams for recording multiplexed VHGs are denoted as ${k_{s,i}}$ and ${k_{r,i}}$ respectively. (b) Wave vector diagram of the reconstruction of the angular multiplexed VHGs under the Bragg matched condition. The grating vector is given by ${K_{g,i}} = {k_{r,i}} - {k_{s,i}}$. The wave vectors of the reconstructing beam and the diffracted beam are given by ${k_{p,i}}$, ${k_{d,i}}$.
Fig. 2.
Fig. 2. Fluorescence images of rabbit intestine tissue samples at two depths by non-axial-scanning multi-plane confocal microscope [11].
Fig. 3.
Fig. 3. Optically sectioned images of sparsely distributed 5 µm fluorescent beads simultaneously acquired from two planes separated by an axial distance of 10 µm: (a) fluorescent beads located at depth 1 and (b) fluorescent beads located at depth 2 [12].
Fig. 4.
Fig. 4. Schematic diagram of the proposed multi-plane DCM. Focused points at two different depths are simultaneously generated by the diffraction of the angularly multiplexed VHGs and probed by corresponding confocal pinhole detectors. The lateral imaging is achieved by two galvo mirrors. Multiple depth images are acquired using two APDs in detection.
Fig. 5.
Fig. 5. (a) Schematic diagram of the two focal depths obtained from multiplexed VHG. (b) Axial intensity response curve $\Delta {\rm{z}}$ obtained after subtraction of curves ${\rm{z}} +$ and ${\rm{z}} -$ for depth 1. (c) Axial intensity response curve $\Delta{\rm{z}}$ obtained after subtraction of curves ${\rm{z}} +$ and ${\rm{z}} -$ for depth 2.
Fig. 6.
Fig. 6. Normalized axial intensity curve obtained from the multi-plane DCM. Red line shows the linear function fitting for comparison. The measured sensitivity of our system is around 25 nm.
Fig. 7.
Fig. 7. (a) Images of a resolution target obtained by multi-plane DCM at two different focal depths. (b) The profile plot along the dashed blue line in (a), along with $x$ and $y$ directions. (c) MTF in the $y$ direction. The lateral resolution of our multi-plane DCM for two depths is 435 nm. Axial depth separation between two images is 10 µm. The MTF is defined as ratio $({I_{\rm{max}}} - {I_{\rm{min}}})/({I_{\rm{max}}} + {I_{\rm{min}}})$. ${I_{\rm{max}}}$ $({I_{\rm{min}}})$ is the maximum (minimum) intensity along with the cross-section profiles.
Fig. 8.
Fig. 8. (a) Schematic of the 3D surface profile of silicon micro-hole array. (b) 3D surface profile measurement of silicon micro-hole array obtained by the multi-plane DCM. (c) The section of the profile along the dashed line is plotted in (b).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

θ p = φ cos 1 [ λ p λ r cos ( φ θ r ) ] ,
I ( z ) = I ( 0 ) sin 2 ( a z ) / ( a z ) 2 ,
a = 4 π sin 2 ( α / 2 ) / λ ,
S ( z ) = 1 I ( z ) | d I ( z ) d z | ,

Metrics