Abstract

A novel, to the best of our knowledge, depth-sensing technology that enables a shallow depth of field was developed by adding a diffuser to the rear end of a mechanical control lens that can capture 2D images. The sensor in the optical depth-sensing system obtains the function curve between the motor step and the focus distance through calibration and imports the measured values into the control program’s database. The optical depth-sensing system scans the visible range of an interval, and the Laplacian equation can be applied to confirm whether the interval was in focus by judging the sharpness of the contour of the objects captured in the interval and to define the outline of the objects. Then, the depth information can be obtained by calculating the focus distance based on the motor step during scanning. Finally, the focus images of individual objects are used to calculate the image contours in the depth direction. The focus images of each object are combined to reconstruct a 2.5D model within the sensing range. The optical depth-sensing system is not affected by sunlight or the material of the measured object. Furthermore, the system can be used to obtain color images by using a modified lens. The optical path is simple and does not require complex calculations. Therefore, the proposed system is not easily affected by the environment and exhibits high resolution and calculation speed.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Extended depth-of-field projection method using a high-speed projector with a synchronized oscillating variable-focus lens

Hongjin Xu, Lihui Wang, Satoshi Tabata, Yoshihiro Watanabe, and Masatoshi Ishikawa
Appl. Opt. 60(13) 3917-3924 (2021)

Monocular depth estimation method using a focus tunable lens

Sungwon Choi and Sung-wook Min
Appl. Opt. 58(34) G52-G60 (2019)

Binocular DIC system for 3D correlation measurements

Pengxiang Ge, Huanqing Wang, Yin Hu, and Yonghong Wang
Appl. Opt. 60(14) 4101-4108 (2021)

References

  • View by:
  • |
  • |
  • |

  1. J. Salvi, J. Pagés, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recogn. 37, 827–849 (2004).
    [Crossref]
  2. A. Forbes, “Structured light from lasers,” Laser Photon. Rev. 13, 1900140 (2019).
    [Crossref]
  3. R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37, 390–397 (2001).
    [Crossref]
  4. C. Anand, K. Jainwal, and M. Sarkar, “A three-phase, one-tap high background light subtraction time-of-flight camera,” IEEE Trans. Circuits Syst. I 66, 2219–2229 (2019).
    [Crossref]
  5. D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wrayt, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
    [Crossref]
  6. M. Carfagni, R. Furferi, L. Governi, C. Santarelli, M. Servi, F. Uccheddu, and Y. Volpe, “Metrological and critical characterization of the Intel D415 stereo depth camera,” Sensors 19, 489 (2019).
    [Crossref]
  7. Y. Anisimov, O. Wasenmüller, and D. Stricker, “A compact light field camera for real-time depth estimation,” in Computer Analysis of Images and Patterns (2019), Vol. 11678, pp. 52–63.
  8. G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, and Q. Dai, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11, 926–954 (2017).
    [Crossref]
  9. R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
    [Crossref]
  10. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
    [Crossref]
  11. C. Goodin, D. Carruth, M. Doude, and C. Hudson, “Predicting the influence of rain on LIDAR in ADAS,” Electronics 8, 89 (2019).
    [Crossref]
  12. M. Liao, D. Lu, G. Pedrini, W. Osten, G. Situ, W. He, and X. Peng, “Extending the depth-of-field of imaging systems with a scattering diffuser,” Sci. Rep. 9, 7165 (2019).
    [Crossref]
  13. J. Wang, F. Shi, J. Zhang, and Y. Liu, “A new calibration model of camera lens distortion,” Pattern Recogn. 41, 607–615 (2008).
    [Crossref]
  14. M. Ahmed and A. Farag, “Nonmetric calibration of camera lens distortion: differential methods and robust estimation,” IEEE Trans. Image Process. 14, 1215–1230 (2005).
    [Crossref]
  15. J. H. Wang, S. Y. Lien, J. R. Ho, T. K. Shih, C. F. Chen, C. C. Chen, and W. T. Whang, “Optical diffusers based on silicone emulsions,” Opt. Mater. 32, 374–377 (2009).
    [Crossref]
  16. P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact image code,” IEEE Trans. Commun. 31, 532–540 (1983).
    [Crossref]
  17. A. Huertas and G. Medioni, “Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian masks,” IEEE Trans. Pattern Anal. Mach. Intell. 8, 651–664 (1986).
    [Crossref]
  18. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990).
    [Crossref]
  19. S. M. Chao and D. M. Tsai, “An anisotropic diffusion-based defect detection for low-contrast glass substrates,” Image Vis. Comput. 26, 187–200 (2008).
    [Crossref]
  20. R. J. Pieper and A. Korpel, “Image processing for extended depth of field,” Appl. Opt. 22, 1449–1453 (1983).
    [Crossref]
  21. S. Zhuo and T. Sim, “Defocus map estimation from a single image,” Pattern Recogn. 44, 1852–1858 (2011).
    [Crossref]

2019 (6)

A. Forbes, “Structured light from lasers,” Laser Photon. Rev. 13, 1900140 (2019).
[Crossref]

C. Anand, K. Jainwal, and M. Sarkar, “A three-phase, one-tap high background light subtraction time-of-flight camera,” IEEE Trans. Circuits Syst. I 66, 2219–2229 (2019).
[Crossref]

M. Carfagni, R. Furferi, L. Governi, C. Santarelli, M. Servi, F. Uccheddu, and Y. Volpe, “Metrological and critical characterization of the Intel D415 stereo depth camera,” Sensors 19, 489 (2019).
[Crossref]

R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

C. Goodin, D. Carruth, M. Doude, and C. Hudson, “Predicting the influence of rain on LIDAR in ADAS,” Electronics 8, 89 (2019).
[Crossref]

M. Liao, D. Lu, G. Pedrini, W. Osten, G. Situ, W. He, and X. Peng, “Extending the depth-of-field of imaging systems with a scattering diffuser,” Sci. Rep. 9, 7165 (2019).
[Crossref]

2017 (1)

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, and Q. Dai, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11, 926–954 (2017).
[Crossref]

2011 (1)

S. Zhuo and T. Sim, “Defocus map estimation from a single image,” Pattern Recogn. 44, 1852–1858 (2011).
[Crossref]

2009 (1)

J. H. Wang, S. Y. Lien, J. R. Ho, T. K. Shih, C. F. Chen, C. C. Chen, and W. T. Whang, “Optical diffusers based on silicone emulsions,” Opt. Mater. 32, 374–377 (2009).
[Crossref]

2008 (2)

J. Wang, F. Shi, J. Zhang, and Y. Liu, “A new calibration model of camera lens distortion,” Pattern Recogn. 41, 607–615 (2008).
[Crossref]

S. M. Chao and D. M. Tsai, “An anisotropic diffusion-based defect detection for low-contrast glass substrates,” Image Vis. Comput. 26, 187–200 (2008).
[Crossref]

2005 (1)

M. Ahmed and A. Farag, “Nonmetric calibration of camera lens distortion: differential methods and robust estimation,” IEEE Trans. Image Process. 14, 1215–1230 (2005).
[Crossref]

2004 (1)

J. Salvi, J. Pagés, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recogn. 37, 827–849 (2004).
[Crossref]

2001 (1)

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37, 390–397 (2001).
[Crossref]

1990 (1)

P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990).
[Crossref]

1988 (1)

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wrayt, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref]

1986 (1)

A. Huertas and G. Medioni, “Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian masks,” IEEE Trans. Pattern Anal. Mach. Intell. 8, 651–664 (1986).
[Crossref]

1983 (2)

P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact image code,” IEEE Trans. Commun. 31, 532–540 (1983).
[Crossref]

R. J. Pieper and A. Korpel, “Image processing for extended depth of field,” Appl. Opt. 22, 1449–1453 (1983).
[Crossref]

1981 (1)

Adelson, E. H.

P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact image code,” IEEE Trans. Commun. 31, 532–540 (1983).
[Crossref]

Ahmed, M.

M. Ahmed and A. Farag, “Nonmetric calibration of camera lens distortion: differential methods and robust estimation,” IEEE Trans. Image Process. 14, 1215–1230 (2005).
[Crossref]

Anand, C.

C. Anand, K. Jainwal, and M. Sarkar, “A three-phase, one-tap high background light subtraction time-of-flight camera,” IEEE Trans. Circuits Syst. I 66, 2219–2229 (2019).
[Crossref]

Anisimov, Y.

Y. Anisimov, O. Wasenmüller, and D. Stricker, “A compact light field camera for real-time depth estimation,” in Computer Analysis of Images and Patterns (2019), Vol. 11678, pp. 52–63.

Arridge, S.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wrayt, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref]

Batlle, J.

J. Salvi, J. Pagés, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recogn. 37, 827–849 (2004).
[Crossref]

Burt, P. J.

P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact image code,” IEEE Trans. Commun. 31, 532–540 (1983).
[Crossref]

Carfagni, M.

M. Carfagni, R. Furferi, L. Governi, C. Santarelli, M. Servi, F. Uccheddu, and Y. Volpe, “Metrological and critical characterization of the Intel D415 stereo depth camera,” Sensors 19, 489 (2019).
[Crossref]

Carruth, D.

C. Goodin, D. Carruth, M. Doude, and C. Hudson, “Predicting the influence of rain on LIDAR in ADAS,” Electronics 8, 89 (2019).
[Crossref]

Chao, S. M.

S. M. Chao and D. M. Tsai, “An anisotropic diffusion-based defect detection for low-contrast glass substrates,” Image Vis. Comput. 26, 187–200 (2008).
[Crossref]

Chen, C. C.

J. H. Wang, S. Y. Lien, J. R. Ho, T. K. Shih, C. F. Chen, C. C. Chen, and W. T. Whang, “Optical diffusers based on silicone emulsions,” Opt. Mater. 32, 374–377 (2009).
[Crossref]

Chen, C. F.

J. H. Wang, S. Y. Lien, J. R. Ho, T. K. Shih, C. F. Chen, C. C. Chen, and W. T. Whang, “Optical diffusers based on silicone emulsions,” Opt. Mater. 32, 374–377 (2009).
[Crossref]

Chen, J.

R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Chen, J. W.

R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Chen, M. K.

R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Chen, Y. H.

R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Chu, C. H.

R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Chung, T. L.

R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Cope, M.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wrayt, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref]

Dai, Q.

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, and Q. Dai, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11, 926–954 (2017).
[Crossref]

Delpy, D. T.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wrayt, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref]

Doude, M.

C. Goodin, D. Carruth, M. Doude, and C. Hudson, “Predicting the influence of rain on LIDAR in ADAS,” Electronics 8, 89 (2019).
[Crossref]

Farag, A.

M. Ahmed and A. Farag, “Nonmetric calibration of camera lens distortion: differential methods and robust estimation,” IEEE Trans. Image Process. 14, 1215–1230 (2005).
[Crossref]

Forbes, A.

A. Forbes, “Structured light from lasers,” Laser Photon. Rev. 13, 1900140 (2019).
[Crossref]

Furferi, R.

M. Carfagni, R. Furferi, L. Governi, C. Santarelli, M. Servi, F. Uccheddu, and Y. Volpe, “Metrological and critical characterization of the Intel D415 stereo depth camera,” Sensors 19, 489 (2019).
[Crossref]

Goodin, C.

C. Goodin, D. Carruth, M. Doude, and C. Hudson, “Predicting the influence of rain on LIDAR in ADAS,” Electronics 8, 89 (2019).
[Crossref]

Governi, L.

M. Carfagni, R. Furferi, L. Governi, C. Santarelli, M. Servi, F. Uccheddu, and Y. Volpe, “Metrological and critical characterization of the Intel D415 stereo depth camera,” Sensors 19, 489 (2019).
[Crossref]

He, W.

M. Liao, D. Lu, G. Pedrini, W. Osten, G. Situ, W. He, and X. Peng, “Extending the depth-of-field of imaging systems with a scattering diffuser,” Sci. Rep. 9, 7165 (2019).
[Crossref]

Ho, J. R.

J. H. Wang, S. Y. Lien, J. R. Ho, T. K. Shih, C. F. Chen, C. C. Chen, and W. T. Whang, “Optical diffusers based on silicone emulsions,” Opt. Mater. 32, 374–377 (2009).
[Crossref]

Huang, Y. T.

R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Hudson, C.

C. Goodin, D. Carruth, M. Doude, and C. Hudson, “Predicting the influence of rain on LIDAR in ADAS,” Electronics 8, 89 (2019).
[Crossref]

Huertas, A.

A. Huertas and G. Medioni, “Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian masks,” IEEE Trans. Pattern Anal. Mach. Intell. 8, 651–664 (1986).
[Crossref]

Jainwal, K.

C. Anand, K. Jainwal, and M. Sarkar, “A three-phase, one-tap high background light subtraction time-of-flight camera,” IEEE Trans. Circuits Syst. I 66, 2219–2229 (2019).
[Crossref]

Jarabo, A.

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, and Q. Dai, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11, 926–954 (2017).
[Crossref]

Klett, J. D.

Korpel, A.

Kuo, H. Y.

R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Lange, R.

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37, 390–397 (2001).
[Crossref]

Li, T.

R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Liao, M.

M. Liao, D. Lu, G. Pedrini, W. Osten, G. Situ, W. He, and X. Peng, “Extending the depth-of-field of imaging systems with a scattering diffuser,” Sci. Rep. 9, 7165 (2019).
[Crossref]

Lien, S. Y.

J. H. Wang, S. Y. Lien, J. R. Ho, T. K. Shih, C. F. Chen, C. C. Chen, and W. T. Whang, “Optical diffusers based on silicone emulsions,” Opt. Mater. 32, 374–377 (2009).
[Crossref]

Lin, R. J.

R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Liu, Y.

J. Wang, F. Shi, J. Zhang, and Y. Liu, “A new calibration model of camera lens distortion,” Pattern Recogn. 41, 607–615 (2008).
[Crossref]

Lu, D.

M. Liao, D. Lu, G. Pedrini, W. Osten, G. Situ, W. He, and X. Peng, “Extending the depth-of-field of imaging systems with a scattering diffuser,” Sci. Rep. 9, 7165 (2019).
[Crossref]

Malik, J.

P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990).
[Crossref]

Masia, B.

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, and Q. Dai, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11, 926–954 (2017).
[Crossref]

Medioni, G.

A. Huertas and G. Medioni, “Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian masks,” IEEE Trans. Pattern Anal. Mach. Intell. 8, 651–664 (1986).
[Crossref]

Osten, W.

M. Liao, D. Lu, G. Pedrini, W. Osten, G. Situ, W. He, and X. Peng, “Extending the depth-of-field of imaging systems with a scattering diffuser,” Sci. Rep. 9, 7165 (2019).
[Crossref]

Pagés, J.

J. Salvi, J. Pagés, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recogn. 37, 827–849 (2004).
[Crossref]

Pedrini, G.

M. Liao, D. Lu, G. Pedrini, W. Osten, G. Situ, W. He, and X. Peng, “Extending the depth-of-field of imaging systems with a scattering diffuser,” Sci. Rep. 9, 7165 (2019).
[Crossref]

Peng, X.

M. Liao, D. Lu, G. Pedrini, W. Osten, G. Situ, W. He, and X. Peng, “Extending the depth-of-field of imaging systems with a scattering diffuser,” Sci. Rep. 9, 7165 (2019).
[Crossref]

Perona, P.

P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990).
[Crossref]

Pieper, R. J.

Salvi, J.

J. Salvi, J. Pagés, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recogn. 37, 827–849 (2004).
[Crossref]

Santarelli, C.

M. Carfagni, R. Furferi, L. Governi, C. Santarelli, M. Servi, F. Uccheddu, and Y. Volpe, “Metrological and critical characterization of the Intel D415 stereo depth camera,” Sensors 19, 489 (2019).
[Crossref]

Sarkar, M.

C. Anand, K. Jainwal, and M. Sarkar, “A three-phase, one-tap high background light subtraction time-of-flight camera,” IEEE Trans. Circuits Syst. I 66, 2219–2229 (2019).
[Crossref]

Seitz, P.

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37, 390–397 (2001).
[Crossref]

Servi, M.

M. Carfagni, R. Furferi, L. Governi, C. Santarelli, M. Servi, F. Uccheddu, and Y. Volpe, “Metrological and critical characterization of the Intel D415 stereo depth camera,” Sensors 19, 489 (2019).
[Crossref]

Shi, F.

J. Wang, F. Shi, J. Zhang, and Y. Liu, “A new calibration model of camera lens distortion,” Pattern Recogn. 41, 607–615 (2008).
[Crossref]

Shih, T. K.

J. H. Wang, S. Y. Lien, J. R. Ho, T. K. Shih, C. F. Chen, C. C. Chen, and W. T. Whang, “Optical diffusers based on silicone emulsions,” Opt. Mater. 32, 374–377 (2009).
[Crossref]

Sim, T.

S. Zhuo and T. Sim, “Defocus map estimation from a single image,” Pattern Recogn. 44, 1852–1858 (2011).
[Crossref]

Situ, G.

M. Liao, D. Lu, G. Pedrini, W. Osten, G. Situ, W. He, and X. Peng, “Extending the depth-of-field of imaging systems with a scattering diffuser,” Sci. Rep. 9, 7165 (2019).
[Crossref]

Stricker, D.

Y. Anisimov, O. Wasenmüller, and D. Stricker, “A compact light field camera for real-time depth estimation,” in Computer Analysis of Images and Patterns (2019), Vol. 11678, pp. 52–63.

Su, V. C.

R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Tsai, D. M.

S. M. Chao and D. M. Tsai, “An anisotropic diffusion-based defect detection for low-contrast glass substrates,” Image Vis. Comput. 26, 187–200 (2008).
[Crossref]

Tsai, D. P.

R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Uccheddu, F.

M. Carfagni, R. Furferi, L. Governi, C. Santarelli, M. Servi, F. Uccheddu, and Y. Volpe, “Metrological and critical characterization of the Intel D415 stereo depth camera,” Sensors 19, 489 (2019).
[Crossref]

Volpe, Y.

M. Carfagni, R. Furferi, L. Governi, C. Santarelli, M. Servi, F. Uccheddu, and Y. Volpe, “Metrological and critical characterization of the Intel D415 stereo depth camera,” Sensors 19, 489 (2019).
[Crossref]

Wang, J.

J. Wang, F. Shi, J. Zhang, and Y. Liu, “A new calibration model of camera lens distortion,” Pattern Recogn. 41, 607–615 (2008).
[Crossref]

Wang, J. H.

R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

J. H. Wang, S. Y. Lien, J. R. Ho, T. K. Shih, C. F. Chen, C. C. Chen, and W. T. Whang, “Optical diffusers based on silicone emulsions,” Opt. Mater. 32, 374–377 (2009).
[Crossref]

Wang, L.

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, and Q. Dai, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11, 926–954 (2017).
[Crossref]

Wang, S.

R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Wang, Z.

R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Wasenmüller, O.

Y. Anisimov, O. Wasenmüller, and D. Stricker, “A compact light field camera for real-time depth estimation,” in Computer Analysis of Images and Patterns (2019), Vol. 11678, pp. 52–63.

Whang, W. T.

J. H. Wang, S. Y. Lien, J. R. Ho, T. K. Shih, C. F. Chen, C. C. Chen, and W. T. Whang, “Optical diffusers based on silicone emulsions,” Opt. Mater. 32, 374–377 (2009).
[Crossref]

Wrayt, S.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wrayt, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref]

Wu, G.

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, and Q. Dai, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11, 926–954 (2017).
[Crossref]

Wu, P. C.

R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Wyatt, J.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wrayt, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref]

Zee, P.

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wrayt, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref]

Zhang, J.

J. Wang, F. Shi, J. Zhang, and Y. Liu, “A new calibration model of camera lens distortion,” Pattern Recogn. 41, 607–615 (2008).
[Crossref]

Zhang, Y.

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, and Q. Dai, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11, 926–954 (2017).
[Crossref]

Zhu, S.

R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Zhuo, S.

S. Zhuo and T. Sim, “Defocus map estimation from a single image,” Pattern Recogn. 44, 1852–1858 (2011).
[Crossref]

Appl. Opt. (2)

Electronics (1)

C. Goodin, D. Carruth, M. Doude, and C. Hudson, “Predicting the influence of rain on LIDAR in ADAS,” Electronics 8, 89 (2019).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37, 390–397 (2001).
[Crossref]

IEEE J. Sel. Top. Signal Process. (1)

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, and Q. Dai, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11, 926–954 (2017).
[Crossref]

IEEE Trans. Circuits Syst. I (1)

C. Anand, K. Jainwal, and M. Sarkar, “A three-phase, one-tap high background light subtraction time-of-flight camera,” IEEE Trans. Circuits Syst. I 66, 2219–2229 (2019).
[Crossref]

IEEE Trans. Commun. (1)

P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact image code,” IEEE Trans. Commun. 31, 532–540 (1983).
[Crossref]

IEEE Trans. Image Process. (1)

M. Ahmed and A. Farag, “Nonmetric calibration of camera lens distortion: differential methods and robust estimation,” IEEE Trans. Image Process. 14, 1215–1230 (2005).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (2)

A. Huertas and G. Medioni, “Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian masks,” IEEE Trans. Pattern Anal. Mach. Intell. 8, 651–664 (1986).
[Crossref]

P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990).
[Crossref]

Image Vis. Comput. (1)

S. M. Chao and D. M. Tsai, “An anisotropic diffusion-based defect detection for low-contrast glass substrates,” Image Vis. Comput. 26, 187–200 (2008).
[Crossref]

Laser Photon. Rev. (1)

A. Forbes, “Structured light from lasers,” Laser Photon. Rev. 13, 1900140 (2019).
[Crossref]

Nat. Nanotechnol. (1)

R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “Achromatic metalens array for full-colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
[Crossref]

Opt. Mater. (1)

J. H. Wang, S. Y. Lien, J. R. Ho, T. K. Shih, C. F. Chen, C. C. Chen, and W. T. Whang, “Optical diffusers based on silicone emulsions,” Opt. Mater. 32, 374–377 (2009).
[Crossref]

Pattern Recogn. (3)

J. Salvi, J. Pagés, and J. Batlle, “Pattern codification strategies in structured light systems,” Pattern Recogn. 37, 827–849 (2004).
[Crossref]

S. Zhuo and T. Sim, “Defocus map estimation from a single image,” Pattern Recogn. 44, 1852–1858 (2011).
[Crossref]

J. Wang, F. Shi, J. Zhang, and Y. Liu, “A new calibration model of camera lens distortion,” Pattern Recogn. 41, 607–615 (2008).
[Crossref]

Phys. Med. Biol. (1)

D. T. Delpy, M. Cope, P. Zee, S. Arridge, S. Wrayt, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref]

Sci. Rep. (1)

M. Liao, D. Lu, G. Pedrini, W. Osten, G. Situ, W. He, and X. Peng, “Extending the depth-of-field of imaging systems with a scattering diffuser,” Sci. Rep. 9, 7165 (2019).
[Crossref]

Sensors (1)

M. Carfagni, R. Furferi, L. Governi, C. Santarelli, M. Servi, F. Uccheddu, and Y. Volpe, “Metrological and critical characterization of the Intel D415 stereo depth camera,” Sensors 19, 489 (2019).
[Crossref]

Other (1)

Y. Anisimov, O. Wasenmüller, and D. Stricker, “A compact light field camera for real-time depth estimation,” in Computer Analysis of Images and Patterns (2019), Vol. 11678, pp. 52–63.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Schematic of the optical system that can shoot 2D photographs.
Fig. 2.
Fig. 2. Schematic of the camera’s depth of field. (a) General depth of field. (b) Shallow depth of field.
Fig. 3.
Fig. 3. Schematic of the optical depth-sensing system.
Fig. 4.
Fig. 4. (a) Schematic of the imaging light path of the diffuser. (b) Physical characteristics of the diffuser.
Fig. 5.
Fig. 5. ZEMAX is used to simulate and verify the diffuser in reducing the depth of field. Figure shows the simulation results that the object light is focused on (a) front of the diffuser, (b) the diffuser, and (c) behind the diffuser.
Fig. 6.
Fig. 6. (a) Original image of an object. (b) Image obtained by detecting the edge of the object by using Laplacian. (c) Overall shape of the object.
Fig. 7.
Fig. 7. Evaluation of the diameter of the circle of confusion of the diffuser.
Fig. 8.
Fig. 8. Structure of diffuser surface (shot by KEYENCE VK-X1000).
Fig. 9.
Fig. 9. (a) Use of a checkerboard to calibrate the optical depth-sensing system. (b) Relationship curve between focus distance and motor step.
Fig. 10.
Fig. 10. Depth scanning using the optical depth sensing system. (a) Actual placement of the doll. (b) Image with shallow depth of field obtained after scanning. Depth values of the dolls were measured at 31, 49, 101, 152, and 196 cm, respectively.
Fig. 11.
Fig. 11. Integrating the images of each depth to obtain (a) depth map and (b) 2.5D images.
Fig. 12.
Fig. 12. Shallow depth of field images of the objects with fewer features or low spatial frequencies, among which include (a) a laser-engraved ornament, (b) a corrugated box, and (c) glass jars.
Fig. 13.
Fig. 13. Depth-of-field measurement results of the optical depth-sensing system.
Fig. 14.
Fig. 14. Use of ZEMAX to simulate the image quality results of adding diffusers with haze (a) 0%, (b) 30%, (c) 60%, and (d) 90%.

Tables (2)

Tables Icon

Table 1. Proposed Method and Light Field Comparison

Tables Icon

Table 2. Proposed Method and Stereo Vision Comparison

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

1 s + 1 v = 1 f ,
D O F = 2 f 2 s 2 N c f 4 s 2 N 2 c 2 ,
2 I ( x , y ) = [ I ( x + 1 , y ) + I ( x 1 , y ) + I ( x , y + 1 ) + I ( x , y 1 ) ] 4 I ( x , y ) .
c = α ( 1 h ) | D o b j D d i f f | D o b j f F 2 N F ( D d i f f f F ) ,
{ y = 6 × 10 9 x 3 0.0001 x 2 + 0.9189 x 2154.4 , 30 x < 80 y = 2 × 10 7 x 3 0.0059 x 2 + 51.951 x 151469 , 80 x < 270 .

Metrics