Abstract

The strengths of the first thirteen rotational lines of HCl have been measured by asymmetric Fourier transform techniques. From these strengths, the dipole moment is determined to be 1.134 ± 0.015 D. This value is substantially greater than the value determined from rf polarization measurements. A number of possible sources of systematic error in the interferometer are considered in an attempt to resolve this discrepancy.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. E. Bell, Infrared Phys. 6, 57 (1966).
    [Crossref]
  2. E. E. Russell, E. E. Bell, Infrared Phys. 6, 75 (1966).
    [Crossref]
  3. E. P. Gross, Phys. Rev. 97, 395 (1955).
    [Crossref]
  4. J. E. Chamberlain, Infrared Phys. 5, 175 (1965).
    [Crossref]
  5. J. E. Chamberlain, J. Quant. Spectry. Radiative Transfer 7, 151 (1967).
    [Crossref]
  6. R. P. Bell, I. E. Coop, Trans. Faraday Soc. 34, 1209 (1938).
    [Crossref]
  7. S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley Publishing Co., Inc., Reading, Mass., 1959).
  8. F. Legay, Cahiers Phys. 11, 383 (1957); Cahiers Phys. 12, 8 (1958).
  9. A. P. Altshuller, J. Chem. Phys. 23, 256 (1956).
  10. E. E. Russell, E. E. Bell, J. Opt. Soc. Am. 57, 341 (1967).
    [Crossref]
  11. N. G. Yaroslavsky, A. E. Stanevich, Opt. Spectry. 7, 380 (1956).
  12. R. Rollefson, A. H. Rollefson, Phys. Rev. 48, 779 (1935).
    [Crossref]
  13. C. A. Burrus, J. Chem. Phys. 31, 1270 (1959).
    [Crossref]

1967 (2)

J. E. Chamberlain, J. Quant. Spectry. Radiative Transfer 7, 151 (1967).
[Crossref]

E. E. Russell, E. E. Bell, J. Opt. Soc. Am. 57, 341 (1967).
[Crossref]

1966 (2)

E. E. Bell, Infrared Phys. 6, 57 (1966).
[Crossref]

E. E. Russell, E. E. Bell, Infrared Phys. 6, 75 (1966).
[Crossref]

1965 (1)

J. E. Chamberlain, Infrared Phys. 5, 175 (1965).
[Crossref]

1959 (1)

C. A. Burrus, J. Chem. Phys. 31, 1270 (1959).
[Crossref]

1957 (1)

F. Legay, Cahiers Phys. 11, 383 (1957); Cahiers Phys. 12, 8 (1958).

1956 (2)

A. P. Altshuller, J. Chem. Phys. 23, 256 (1956).

N. G. Yaroslavsky, A. E. Stanevich, Opt. Spectry. 7, 380 (1956).

1955 (1)

E. P. Gross, Phys. Rev. 97, 395 (1955).
[Crossref]

1938 (1)

R. P. Bell, I. E. Coop, Trans. Faraday Soc. 34, 1209 (1938).
[Crossref]

1935 (1)

R. Rollefson, A. H. Rollefson, Phys. Rev. 48, 779 (1935).
[Crossref]

Altshuller, A. P.

A. P. Altshuller, J. Chem. Phys. 23, 256 (1956).

Bell, E. E.

E. E. Russell, E. E. Bell, J. Opt. Soc. Am. 57, 341 (1967).
[Crossref]

E. E. Bell, Infrared Phys. 6, 57 (1966).
[Crossref]

E. E. Russell, E. E. Bell, Infrared Phys. 6, 75 (1966).
[Crossref]

Bell, R. P.

R. P. Bell, I. E. Coop, Trans. Faraday Soc. 34, 1209 (1938).
[Crossref]

Burrus, C. A.

C. A. Burrus, J. Chem. Phys. 31, 1270 (1959).
[Crossref]

Chamberlain, J. E.

J. E. Chamberlain, J. Quant. Spectry. Radiative Transfer 7, 151 (1967).
[Crossref]

J. E. Chamberlain, Infrared Phys. 5, 175 (1965).
[Crossref]

Coop, I. E.

R. P. Bell, I. E. Coop, Trans. Faraday Soc. 34, 1209 (1938).
[Crossref]

Gross, E. P.

E. P. Gross, Phys. Rev. 97, 395 (1955).
[Crossref]

Legay, F.

F. Legay, Cahiers Phys. 11, 383 (1957); Cahiers Phys. 12, 8 (1958).

Penner, S. S.

S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley Publishing Co., Inc., Reading, Mass., 1959).

Rollefson, A. H.

R. Rollefson, A. H. Rollefson, Phys. Rev. 48, 779 (1935).
[Crossref]

Rollefson, R.

R. Rollefson, A. H. Rollefson, Phys. Rev. 48, 779 (1935).
[Crossref]

Russell, E. E.

E. E. Russell, E. E. Bell, J. Opt. Soc. Am. 57, 341 (1967).
[Crossref]

E. E. Russell, E. E. Bell, Infrared Phys. 6, 75 (1966).
[Crossref]

Stanevich, A. E.

N. G. Yaroslavsky, A. E. Stanevich, Opt. Spectry. 7, 380 (1956).

Yaroslavsky, N. G.

N. G. Yaroslavsky, A. E. Stanevich, Opt. Spectry. 7, 380 (1956).

Cahiers Phys. (1)

F. Legay, Cahiers Phys. 11, 383 (1957); Cahiers Phys. 12, 8 (1958).

Infrared Phys. (3)

J. E. Chamberlain, Infrared Phys. 5, 175 (1965).
[Crossref]

E. E. Bell, Infrared Phys. 6, 57 (1966).
[Crossref]

E. E. Russell, E. E. Bell, Infrared Phys. 6, 75 (1966).
[Crossref]

J. Chem. Phys. (2)

C. A. Burrus, J. Chem. Phys. 31, 1270 (1959).
[Crossref]

A. P. Altshuller, J. Chem. Phys. 23, 256 (1956).

J. Opt. Soc. Am. (1)

J. Quant. Spectry. Radiative Transfer (1)

J. E. Chamberlain, J. Quant. Spectry. Radiative Transfer 7, 151 (1967).
[Crossref]

Opt. Spectry. (1)

N. G. Yaroslavsky, A. E. Stanevich, Opt. Spectry. 7, 380 (1956).

Phys. Rev. (2)

R. Rollefson, A. H. Rollefson, Phys. Rev. 48, 779 (1935).
[Crossref]

E. P. Gross, Phys. Rev. 97, 395 (1955).
[Crossref]

Trans. Faraday Soc. (1)

R. P. Bell, I. E. Coop, Trans. Faraday Soc. 34, 1209 (1938).
[Crossref]

Other (1)

S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley Publishing Co., Inc., Reading, Mass., 1959).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Index of refraction per atmosphere of HCl from 10 cm−1 to 230 cm−1. The circles denote experimentally determined values. The solid line is calculated from the measured strengths and (n − 1).

Fig. 2
Fig. 2

Index of refraction per atmosphere of HCl from 200 cm−1 to 280 cm−1 on larger scale. The circles denote experimentally determined values. The solid line is calculated from the measured strengths and (n − 1).

Fig. 3
Fig. 3

Calculation of the strength of the 5 → 6 transition in HCl. The crosses are calculated assuming that all other lines in the band have strengths corresponding to μ = 1.08 D. The circles are calculated assuming that all other lines have strengths determined from the best fit to the data.

Tables (1)

Tables Icon

Table I Measured Rotational Line Strengths and Corresponding Dipole Moments in HCl

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n - 1 = ( 2 π ν d ) - 1 { m π + tan - 1 [ S ( ν ) / C ( ν ) ] } ,
n - 1 = ( n - 1 ) + 1 2 π 2 J S J ν J 2 - ν 2 ( ν J 2 - ν 2 ) 2 + 4 ν 2 γ J 2 .
n - 1 ( n - 1 ) + 1 2 π 2 J S J ν J 2 - ν 2 ,
S J = 8 π 3 L ν 3 h c R T exp ( - E / k T ) [ 1 - exp ( - h c ν / k T ) ] Z ( J + 1 ) μ 2 ,
S J = { 2 π 2 [ n ( ν ) - n ( ν ) ] - J J S J f J ( ν , ν ) } / f J ( ν , ν ) ,
f J ( ν , ν ) = ( ν J 2 - ν 2 ) - 1 - ( ν J 2 - ν 2 ) - 1 ;
Δ n calc = ( 1 + 1 2 β 2 ) Δ n ,
φ calc - φ = ( - k / 2 π ) [ d ln P ( ν ) / d ν ] .

Metrics