Abstract

A polarization interferometer has been constructed to study the spectral modulation transfer function of monochromators in the visible region. The instrument consists of a Soleil compensator and interchangeable fixed compensators mounted between polarizers. As the retardation of the compensator is varied the light reaching the analyzer ranges from plane polarized to circularly polarized. In this way a fringe system is generated, permitting the interferogram of a light distribution to be recorded, just as with a conventional two-beam interferometer. The transfer function of a prism monochromator has been studied under varied conditions of slit width and focusing.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. J. Coates, H. Hausdorff, J. Opt. Soc. Am. 45, 425 (1955).
    [CrossRef]
  2. A. F. Vasilev, Opt. Spectry. 14, 74 (1963).
  3. J. E. Stewart, Appl. Opt. 4, 609 (1965).
    [CrossRef]
  4. A. Röseler, Infrared Phys. 5, 81 (1965); Infrared Phys. 6, 111 (1966).
    [CrossRef]
  5. H. Sakai, G. A. Vanasse, J. Opt. Soc. Am. 56, 357 (1966).
    [CrossRef]
  6. J. E. Hoffman, G. A. Vanasse, Appl. Opt. 5, 1167 (1966).
    [CrossRef] [PubMed]
  7. L. Mertz, J. Phys. Radium 19, 233 (1958); also Transformations in Optics (John Wiley & Sons, Inc., New York, 1965).
    [CrossRef]
  8. W. M. Sinton, J. Quant. Spectry. Radiative Transfer 3, 551 (1963).
    [CrossRef]
  9. B. N. Grechushnikov, G. D. Shnyrev, I. P. Petrov, Opt. Spectry. 18, 66 (1965).
  10. W. H. Steel, L. Mertz, Opt. Spectry. 20, 503 (1966).

1966

1965

B. N. Grechushnikov, G. D. Shnyrev, I. P. Petrov, Opt. Spectry. 18, 66 (1965).

J. E. Stewart, Appl. Opt. 4, 609 (1965).
[CrossRef]

A. Röseler, Infrared Phys. 5, 81 (1965); Infrared Phys. 6, 111 (1966).
[CrossRef]

1963

A. F. Vasilev, Opt. Spectry. 14, 74 (1963).

W. M. Sinton, J. Quant. Spectry. Radiative Transfer 3, 551 (1963).
[CrossRef]

1958

L. Mertz, J. Phys. Radium 19, 233 (1958); also Transformations in Optics (John Wiley & Sons, Inc., New York, 1965).
[CrossRef]

1955

Coates, V. J.

Grechushnikov, B. N.

B. N. Grechushnikov, G. D. Shnyrev, I. P. Petrov, Opt. Spectry. 18, 66 (1965).

Hausdorff, H.

Hoffman, J. E.

Mertz, L.

W. H. Steel, L. Mertz, Opt. Spectry. 20, 503 (1966).

L. Mertz, J. Phys. Radium 19, 233 (1958); also Transformations in Optics (John Wiley & Sons, Inc., New York, 1965).
[CrossRef]

Petrov, I. P.

B. N. Grechushnikov, G. D. Shnyrev, I. P. Petrov, Opt. Spectry. 18, 66 (1965).

Röseler, A.

A. Röseler, Infrared Phys. 5, 81 (1965); Infrared Phys. 6, 111 (1966).
[CrossRef]

Sakai, H.

Shnyrev, G. D.

B. N. Grechushnikov, G. D. Shnyrev, I. P. Petrov, Opt. Spectry. 18, 66 (1965).

Sinton, W. M.

W. M. Sinton, J. Quant. Spectry. Radiative Transfer 3, 551 (1963).
[CrossRef]

Steel, W. H.

W. H. Steel, L. Mertz, Opt. Spectry. 20, 503 (1966).

Stewart, J. E.

Vanasse, G. A.

Vasilev, A. F.

A. F. Vasilev, Opt. Spectry. 14, 74 (1963).

Appl. Opt.

Infrared Phys.

A. Röseler, Infrared Phys. 5, 81 (1965); Infrared Phys. 6, 111 (1966).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Radium

L. Mertz, J. Phys. Radium 19, 233 (1958); also Transformations in Optics (John Wiley & Sons, Inc., New York, 1965).
[CrossRef]

J. Quant. Spectry. Radiative Transfer

W. M. Sinton, J. Quant. Spectry. Radiative Transfer 3, 551 (1963).
[CrossRef]

Opt. Spectry.

B. N. Grechushnikov, G. D. Shnyrev, I. P. Petrov, Opt. Spectry. 18, 66 (1965).

W. H. Steel, L. Mertz, Opt. Spectry. 20, 503 (1966).

A. F. Vasilev, Opt. Spectry. 14, 74 (1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The polarization interferometer. Prisms Q1 and Q2 can be displaced along track T. The polarizer is at P and the analyzer at A. B1 and B2 are blocks of quartz added for additional retardation or compensation. A collimating lens is at LI and a condensing lens at L2. M is the exit slit of the monochromator and D is the detector.

Fig. 2
Fig. 2

Modulus of the spectral modulation transfer function of a Beckman DU monochromator at several slit widths. The curves are positioned along the axis out of the plane of the page in proportion to the logarithm of the slit width. Slit widths are: (a) 0.025, (b) 0.065, (c) 0.15, (d) 0.5, and (e) 1.0 mm.

Fig. 3
Fig. 3

Modulus of the spectral modulation transfer function of a DU monochromator properly focused and defocused. Slit width is 0.065 mm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P y ( ν 0 ) = x ( ν ) σ ( ν 0 - ν ) d ν .
P y ( ν 0 , t ) = 1 2 [ σ ( ν 0 - ν ) d ν + σ ( ν 0 - ν ) cos 2 π ν t d ν ] .
S ( t ) = S s ( t ) cos 2 π ν 0 t - S a ( t ) sin 2 π ν 0 t ,
S ( N ) = ( sin 2 π N / N 0 2 π N / N 0 ) 2 ,

Metrics