Abstract

An apparatus designed and built to measure the infrared refractive index of an optical material as a function of wavelength and temperature is described. The values obtained for the thermal change in refractive index of a Si–As–Te glass, a Ge–Sb–Se glass, As2S2 glass, and Kodak Irtran 4 are presented. Treatment of these data and literature values for other ir optical materials from a molar refraction standpoint, were used to establish an empirical relationship for predicting unknown ΔNT°C values of new optical materials. Measured values range from +300 × 10−5/°C for covalent single crystal germanium to −235 × 10−6/°C for ionic polycrystalline KRS–5.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Hilton, Appl. Opt. 5, 1877 (1966).
    [CrossRef] [PubMed]
  2. A. R. Hilton, C. E. Jones, M. Brau, Infrared Phys. 6, 183 (1966).
    [CrossRef]
  3. M. Cardona, J. Phys. Chem. Solids 8, 204 (1959).
    [CrossRef]
  4. S. S. Ballard, K. A. McCarthy, W. L. Wolfe, “Optical Methods for Infrared Instrumention”, The University of Michigan State of the Art Report, Willow Run Laboratories (1959).
  5. P. Billard, J. Cornillault, Eds., Acta Electron.6(1962).
  6. C. Kittell, Introduction to Solid State Physics (John Wiley & Sons, Inc., New York, 1956), p. 164.
  7. S. Glasstone, Textbook of Physical Chemistry (D. Van Nostrand Co., Princeton, (1946), p. 545.
  8. A. R. Hilton, C. E. Jones, M. J. Brau, Phys. and Chem. Glasses 7, 105 (1966).

1966 (3)

A. R. Hilton, C. E. Jones, M. Brau, Infrared Phys. 6, 183 (1966).
[CrossRef]

A. R. Hilton, C. E. Jones, M. J. Brau, Phys. and Chem. Glasses 7, 105 (1966).

A. R. Hilton, Appl. Opt. 5, 1877 (1966).
[CrossRef] [PubMed]

1959 (1)

M. Cardona, J. Phys. Chem. Solids 8, 204 (1959).
[CrossRef]

Ballard, S. S.

S. S. Ballard, K. A. McCarthy, W. L. Wolfe, “Optical Methods for Infrared Instrumention”, The University of Michigan State of the Art Report, Willow Run Laboratories (1959).

Brau, M.

A. R. Hilton, C. E. Jones, M. Brau, Infrared Phys. 6, 183 (1966).
[CrossRef]

Brau, M. J.

A. R. Hilton, C. E. Jones, M. J. Brau, Phys. and Chem. Glasses 7, 105 (1966).

Cardona, M.

M. Cardona, J. Phys. Chem. Solids 8, 204 (1959).
[CrossRef]

Glasstone, S.

S. Glasstone, Textbook of Physical Chemistry (D. Van Nostrand Co., Princeton, (1946), p. 545.

Hilton, A. R.

A. R. Hilton, C. E. Jones, M. J. Brau, Phys. and Chem. Glasses 7, 105 (1966).

A. R. Hilton, Appl. Opt. 5, 1877 (1966).
[CrossRef] [PubMed]

A. R. Hilton, C. E. Jones, M. Brau, Infrared Phys. 6, 183 (1966).
[CrossRef]

Jones, C. E.

A. R. Hilton, C. E. Jones, M. Brau, Infrared Phys. 6, 183 (1966).
[CrossRef]

A. R. Hilton, C. E. Jones, M. J. Brau, Phys. and Chem. Glasses 7, 105 (1966).

Kittell, C.

C. Kittell, Introduction to Solid State Physics (John Wiley & Sons, Inc., New York, 1956), p. 164.

McCarthy, K. A.

S. S. Ballard, K. A. McCarthy, W. L. Wolfe, “Optical Methods for Infrared Instrumention”, The University of Michigan State of the Art Report, Willow Run Laboratories (1959).

Wolfe, W. L.

S. S. Ballard, K. A. McCarthy, W. L. Wolfe, “Optical Methods for Infrared Instrumention”, The University of Michigan State of the Art Report, Willow Run Laboratories (1959).

Appl. Opt. (1)

Infrared Phys. (1)

A. R. Hilton, C. E. Jones, M. Brau, Infrared Phys. 6, 183 (1966).
[CrossRef]

J. Phys. Chem. Solids (1)

M. Cardona, J. Phys. Chem. Solids 8, 204 (1959).
[CrossRef]

Phys. and Chem. Glasses (1)

A. R. Hilton, C. E. Jones, M. J. Brau, Phys. and Chem. Glasses 7, 105 (1966).

Other (4)

S. S. Ballard, K. A. McCarthy, W. L. Wolfe, “Optical Methods for Infrared Instrumention”, The University of Michigan State of the Art Report, Willow Run Laboratories (1959).

P. Billard, J. Cornillault, Eds., Acta Electron.6(1962).

C. Kittell, Introduction to Solid State Physics (John Wiley & Sons, Inc., New York, 1956), p. 164.

S. Glasstone, Textbook of Physical Chemistry (D. Van Nostrand Co., Princeton, (1946), p. 545.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagram of precise ir refractive index measuring apparatus.

Fig. 2
Fig. 2

Infrared refractive index results obtained for a Ge–Sb–Se glass at 5 μNT) = 79 × 10−6 °K−1.

Fig. 3
Fig. 3

Infrared refractive index results obtained for Kodak Irtran 4 at 5 μNT) = 48 × 10−6 °K−1.

Fig. 4
Fig. 4

Correlation of refractive index, thermal change in refractive index, and linear thermal coefficient of expansion for ir optical materials.

Fig. 5
Fig. 5

Thermal change in refractive index for ir optical materials as a function of refractive index and linear thermal coefficient of expansion.

Fig. 6
Fig. 6

Calculated thermal change in atomic refraction for ir optical materials.

Tables (1)

Tables Icon

Table I Physical Constants for ir Optical Materials

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P = ( - 1 ) / ( + 2 ) ( M / ρ ) + / π B ( μ 2 / 3 k T ) ,
P total = P electronic + P atomic = ( N 2 - 1 / N 2 + 2 ) ( M / ρ ) .
R = ( N 2 - 1 / N 2 + 2 ) ( M / ρ ) ,
R = ( N 2 - 1 / N 2 + 2 ) ( M / ρ ) = / π B α = / π B r 3 ,
[ N / ( N 2 - 1 ) ( N 2 + 2 ) ] ( Δ N / Δ T ) = ( 1 / 6 R ) ( Δ R / Δ T ) - 1 2 ( Δ l / l ) .
( 1 / N 3 ) ( Δ N / Δ T ) = [ 1 6 ( 1 / R ) ( Δ R / D T ) - 3 Δ l / l ] .

Metrics