Abstract

Infrared reflection spectra (2500–250 cm−1) of some minerals and rocks were recorded with a multiple-scan interference spectrometer. Samples were small, irregular, and unpolished. Spectra were obtained with some samples approximately 1 mm in diameter. Emission of samples was obviated by using the interferometer as chopper.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Coblentz, Investigations of Infra-red Spectra, Part IV, 1906; Part V, 1908 (The Carnegie Institution of Washington, republished by the Coblentz Society and the Perkin-Elmer Corporation, 1962).
  2. G. R. Hunt, J. W. Salisbury, “Lunar Surface Features: Mid-infrared Spectral Observations”, Report AFCRL–64–1019, 1964.
  3. I. Simon, J. Opt. Soc. Am. 41, 336 (1951).
    [CrossRef]
  4. C. Sagan, J. P. Phaneuf, M. Ihnat, Icarus 4, 43 (1965).
    [CrossRef]
  5. W. A. Hovis, Appl. Opt. 5, 245 (1966).
    [CrossRef] [PubMed]
  6. D. G. Rea, T. Belsky, M. Calvin, Science 141, 923 (1963).
    [CrossRef] [PubMed]
  7. R. J. P. Lyon, “Evaluation of Infrared Spectrophotometry for Compositional Analysis of Lunar and Planetary Solid”, NASA Tech. Note D–1871, 1963.
  8. R. J. P. Lyon, E. A. Burns, Econ. Geol. 58, 274 (1963).
    [CrossRef]
  9. R. J. P. Lyon, E. A. Burns, Proceedings of the Second Symposium on Remote Sensing of Environment (University of Michigan Press, Ann Arbor, 1963), pp. 309.
  10. E. A. Burns, R. J. P. Lyon, in The Lunar Surface Layer, J. W. Salisbury, P. E. Glaser, Eds. (Academic Press, New York, 1964), p. 469.
  11. M. J. D. Low, I. Coleman, Spectrochim. Acta 22, 369 (1966).
    [CrossRef]
  12. M. J. D. Low, J. Chem. Educ. 43, 637 (1966).
    [CrossRef] [PubMed]

1966 (3)

M. J. D. Low, I. Coleman, Spectrochim. Acta 22, 369 (1966).
[CrossRef]

M. J. D. Low, J. Chem. Educ. 43, 637 (1966).
[CrossRef] [PubMed]

W. A. Hovis, Appl. Opt. 5, 245 (1966).
[CrossRef] [PubMed]

1965 (1)

C. Sagan, J. P. Phaneuf, M. Ihnat, Icarus 4, 43 (1965).
[CrossRef]

1963 (2)

D. G. Rea, T. Belsky, M. Calvin, Science 141, 923 (1963).
[CrossRef] [PubMed]

R. J. P. Lyon, E. A. Burns, Econ. Geol. 58, 274 (1963).
[CrossRef]

1951 (1)

Belsky, T.

D. G. Rea, T. Belsky, M. Calvin, Science 141, 923 (1963).
[CrossRef] [PubMed]

Burns, E. A.

R. J. P. Lyon, E. A. Burns, Econ. Geol. 58, 274 (1963).
[CrossRef]

R. J. P. Lyon, E. A. Burns, Proceedings of the Second Symposium on Remote Sensing of Environment (University of Michigan Press, Ann Arbor, 1963), pp. 309.

E. A. Burns, R. J. P. Lyon, in The Lunar Surface Layer, J. W. Salisbury, P. E. Glaser, Eds. (Academic Press, New York, 1964), p. 469.

Calvin, M.

D. G. Rea, T. Belsky, M. Calvin, Science 141, 923 (1963).
[CrossRef] [PubMed]

Coblentz, W. A.

W. A. Coblentz, Investigations of Infra-red Spectra, Part IV, 1906; Part V, 1908 (The Carnegie Institution of Washington, republished by the Coblentz Society and the Perkin-Elmer Corporation, 1962).

Coleman, I.

M. J. D. Low, I. Coleman, Spectrochim. Acta 22, 369 (1966).
[CrossRef]

Hovis, W. A.

Hunt, G. R.

G. R. Hunt, J. W. Salisbury, “Lunar Surface Features: Mid-infrared Spectral Observations”, Report AFCRL–64–1019, 1964.

Ihnat, M.

C. Sagan, J. P. Phaneuf, M. Ihnat, Icarus 4, 43 (1965).
[CrossRef]

Low, M. J. D.

M. J. D. Low, J. Chem. Educ. 43, 637 (1966).
[CrossRef] [PubMed]

M. J. D. Low, I. Coleman, Spectrochim. Acta 22, 369 (1966).
[CrossRef]

Lyon, R. J. P.

R. J. P. Lyon, E. A. Burns, Econ. Geol. 58, 274 (1963).
[CrossRef]

R. J. P. Lyon, E. A. Burns, Proceedings of the Second Symposium on Remote Sensing of Environment (University of Michigan Press, Ann Arbor, 1963), pp. 309.

E. A. Burns, R. J. P. Lyon, in The Lunar Surface Layer, J. W. Salisbury, P. E. Glaser, Eds. (Academic Press, New York, 1964), p. 469.

R. J. P. Lyon, “Evaluation of Infrared Spectrophotometry for Compositional Analysis of Lunar and Planetary Solid”, NASA Tech. Note D–1871, 1963.

Phaneuf, J. P.

C. Sagan, J. P. Phaneuf, M. Ihnat, Icarus 4, 43 (1965).
[CrossRef]

Rea, D. G.

D. G. Rea, T. Belsky, M. Calvin, Science 141, 923 (1963).
[CrossRef] [PubMed]

Sagan, C.

C. Sagan, J. P. Phaneuf, M. Ihnat, Icarus 4, 43 (1965).
[CrossRef]

Salisbury, J. W.

G. R. Hunt, J. W. Salisbury, “Lunar Surface Features: Mid-infrared Spectral Observations”, Report AFCRL–64–1019, 1964.

Simon, I.

Appl. Opt. (1)

Econ. Geol. (1)

R. J. P. Lyon, E. A. Burns, Econ. Geol. 58, 274 (1963).
[CrossRef]

Icarus (1)

C. Sagan, J. P. Phaneuf, M. Ihnat, Icarus 4, 43 (1965).
[CrossRef]

J. Chem. Educ. (1)

M. J. D. Low, J. Chem. Educ. 43, 637 (1966).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Science (1)

D. G. Rea, T. Belsky, M. Calvin, Science 141, 923 (1963).
[CrossRef] [PubMed]

Spectrochim. Acta (1)

M. J. D. Low, I. Coleman, Spectrochim. Acta 22, 369 (1966).
[CrossRef]

Other (5)

R. J. P. Lyon, E. A. Burns, Proceedings of the Second Symposium on Remote Sensing of Environment (University of Michigan Press, Ann Arbor, 1963), pp. 309.

E. A. Burns, R. J. P. Lyon, in The Lunar Surface Layer, J. W. Salisbury, P. E. Glaser, Eds. (Academic Press, New York, 1964), p. 469.

R. J. P. Lyon, “Evaluation of Infrared Spectrophotometry for Compositional Analysis of Lunar and Planetary Solid”, NASA Tech. Note D–1871, 1963.

W. A. Coblentz, Investigations of Infra-red Spectra, Part IV, 1906; Part V, 1908 (The Carnegie Institution of Washington, republished by the Coblentz Society and the Perkin-Elmer Corporation, 1962).

G. R. Hunt, J. W. Salisbury, “Lunar Surface Features: Mid-infrared Spectral Observations”, Report AFCRL–64–1019, 1964.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental arrangement.

Fig. 2
Fig. 2

Reflection spectra. A: aluminized first-surface mirror, 300 scans. B: galena, 3-mm2 crystal, 100 scans. C: sphalerite, 4-mm diam irregular piece, 100 scans. D: apatite, 5-mm diam irregular, microcrystalline fragment, 300 scans. E: hornblende, coarse-grained powder, 300 scans. F: azurite, 3-mm diam irregular, flat, porous piece, 300 scans. G: turquoise, 3-mm diam irregular piece, coarse surface, from inside nodule, 300 scans.

Fig. 3
Fig. 3

Reflection spectra. A: talc, granules, 300 scans. B: steatite, 4-mm diam irregular, flat piece, 300 scans. C: garnet, irregular shape with 2-mm2 flat surface, 100 scans. D: synthetic ruby, approx. 4-mm2 area on fractured surface of boule.

Fig. 4
Fig. 4

Reflection spectra of carbonates and sulfates. A: magnesite. B: rhodocrocite. C: calcite. D: barite. E: celestite. F: selenite. Magnesite: coarse granules, 300 scans. Other samples were irregular, flat pieces, approx. 2–4-mm diam; 100 scans for each spectrum.

Fig. 5
Fig. 5

Effect of orientation. Microline, A; B was obtained from the same face after 90° rotation. Na–plagioclase, C; E was obtained after 90° rotation. A,B,C,E: flat, 5-mm diam specimens, 100 scans per spectrum. D: coarse-grained powder, 300 scans.

Fig. 6
Fig. 6

Reflection spectra of granite constituents. A: quartz. B: plagioclase. C: microline. D: muscovite. Specimens were irregular fragments approximately 1-mm diam, obtained from crushed granite.

Metrics