Abstract

Two spectroradiometers, one based on a conventional prism monochromator and the other on a system employing narrow band pass interference filters, have been set up and independently used in the determination of the spectral irradiances of a number of sources over the wavelength range from 0.25 μ to 2.5 μ. Basically, the method of calibration for each system consists of comparing the spectral irradiance of the source under investigation with that of an NBS standard of spectral irradiance. The results obtained with each system on a number of continuous sources agree to about 1% whereas the differences in the spectral irradiances obtained with the two setups on a number of line sources range up to several percent.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Stair, W. E. Schneider, J. K. Jackson, Appl. Opt. 2, 1151 (1963).
    [CrossRef]
  2. R. Stair, W. E. Schneider, W. R. Waters, J. K. Jackson, R. E. Brown, “Some Developments in Improved Methods for the Measurement of the Spectral Irradiances of Solar Simulators”, NASA Report No. CR–201, April1965.
  3. R. Stair, R. G. Johnston, E. W. Halbach, Natl. Bur. Std. J. Res. 64A, 291 (1960).
    [CrossRef]
  4. W. W. Coblentz, Bul. Bur. Std. 11, 98 (1941) S 227.
  5. W. W. Coblentz, W. B. Emerson, Bull. Bur. Std. 12, 503 (1916) S 261.
  6. R. Stair, W. E. Schneider, W. B. Fussell, Appl. Opt. 6, 101 (1967).
    [CrossRef] [PubMed]
  7. A. K. Angström, Tellus 10, 342 (1958).
    [CrossRef]
  8. J. C. DeVos, Physica 20, 690 (1954).
    [CrossRef]
  9. Robert D. Larrabee, J. Opt. Soc. Am. 49, 619 (1959).
    [CrossRef]
  10. R. Stair, W. O. Smith, J. Res. Natl. Bur. Std. 30, 449 (1943) RP 1543.
    [CrossRef]
  11. Louis E. Barbrow, J. Opt. Soc. Am. 49, 22 (1959).
    [CrossRef]
  12. J. R. Hickey, “Correlation of Monochromator and Filter Radiometry Determinations of the Spectral Distribution in Large Simulators,” Proceedings IES and ASTM International Symposium on Solar Radiation, Los Angeles, January 1965. (Institute of Environmental Sciences, Mount Prospect, Ill.)
  13. G. C. Goldman, “Spectral Measurements by the Filter Method on Lewis Carbon-Arc Solar Simulators,” NASA Lewis Research Center Report, 1964.
  14. David G. Goebel, B. Patrick Caldwell, Harry K. Hammond, J. Opt. Soc. Am. 56, 783 (1966).
    [CrossRef]

1967

1966

1963

1960

R. Stair, R. G. Johnston, E. W. Halbach, Natl. Bur. Std. J. Res. 64A, 291 (1960).
[CrossRef]

1959

Louis E. Barbrow, J. Opt. Soc. Am. 49, 22 (1959).
[CrossRef]

Robert D. Larrabee, J. Opt. Soc. Am. 49, 619 (1959).
[CrossRef]

1958

A. K. Angström, Tellus 10, 342 (1958).
[CrossRef]

1954

J. C. DeVos, Physica 20, 690 (1954).
[CrossRef]

1943

R. Stair, W. O. Smith, J. Res. Natl. Bur. Std. 30, 449 (1943) RP 1543.
[CrossRef]

1941

W. W. Coblentz, Bul. Bur. Std. 11, 98 (1941) S 227.

1916

W. W. Coblentz, W. B. Emerson, Bull. Bur. Std. 12, 503 (1916) S 261.

Angström, A. K.

A. K. Angström, Tellus 10, 342 (1958).
[CrossRef]

Barbrow, Louis E.

Louis E. Barbrow, J. Opt. Soc. Am. 49, 22 (1959).
[CrossRef]

Brown, R. E.

R. Stair, W. E. Schneider, W. R. Waters, J. K. Jackson, R. E. Brown, “Some Developments in Improved Methods for the Measurement of the Spectral Irradiances of Solar Simulators”, NASA Report No. CR–201, April1965.

Coblentz, W. W.

W. W. Coblentz, Bul. Bur. Std. 11, 98 (1941) S 227.

W. W. Coblentz, W. B. Emerson, Bull. Bur. Std. 12, 503 (1916) S 261.

DeVos, J. C.

J. C. DeVos, Physica 20, 690 (1954).
[CrossRef]

Emerson, W. B.

W. W. Coblentz, W. B. Emerson, Bull. Bur. Std. 12, 503 (1916) S 261.

Fussell, W. B.

Goebel, David G.

Goldman, G. C.

G. C. Goldman, “Spectral Measurements by the Filter Method on Lewis Carbon-Arc Solar Simulators,” NASA Lewis Research Center Report, 1964.

Halbach, E. W.

R. Stair, R. G. Johnston, E. W. Halbach, Natl. Bur. Std. J. Res. 64A, 291 (1960).
[CrossRef]

Hammond, Harry K.

Hickey, J. R.

J. R. Hickey, “Correlation of Monochromator and Filter Radiometry Determinations of the Spectral Distribution in Large Simulators,” Proceedings IES and ASTM International Symposium on Solar Radiation, Los Angeles, January 1965. (Institute of Environmental Sciences, Mount Prospect, Ill.)

Jackson, J. K.

R. Stair, W. E. Schneider, J. K. Jackson, Appl. Opt. 2, 1151 (1963).
[CrossRef]

R. Stair, W. E. Schneider, W. R. Waters, J. K. Jackson, R. E. Brown, “Some Developments in Improved Methods for the Measurement of the Spectral Irradiances of Solar Simulators”, NASA Report No. CR–201, April1965.

Johnston, R. G.

R. Stair, R. G. Johnston, E. W. Halbach, Natl. Bur. Std. J. Res. 64A, 291 (1960).
[CrossRef]

Larrabee, Robert D.

Patrick Caldwell, B.

Schneider, W. E.

R. Stair, W. E. Schneider, W. B. Fussell, Appl. Opt. 6, 101 (1967).
[CrossRef] [PubMed]

R. Stair, W. E. Schneider, J. K. Jackson, Appl. Opt. 2, 1151 (1963).
[CrossRef]

R. Stair, W. E. Schneider, W. R. Waters, J. K. Jackson, R. E. Brown, “Some Developments in Improved Methods for the Measurement of the Spectral Irradiances of Solar Simulators”, NASA Report No. CR–201, April1965.

Smith, W. O.

R. Stair, W. O. Smith, J. Res. Natl. Bur. Std. 30, 449 (1943) RP 1543.
[CrossRef]

Stair, R.

R. Stair, W. E. Schneider, W. B. Fussell, Appl. Opt. 6, 101 (1967).
[CrossRef] [PubMed]

R. Stair, W. E. Schneider, J. K. Jackson, Appl. Opt. 2, 1151 (1963).
[CrossRef]

R. Stair, R. G. Johnston, E. W. Halbach, Natl. Bur. Std. J. Res. 64A, 291 (1960).
[CrossRef]

R. Stair, W. O. Smith, J. Res. Natl. Bur. Std. 30, 449 (1943) RP 1543.
[CrossRef]

R. Stair, W. E. Schneider, W. R. Waters, J. K. Jackson, R. E. Brown, “Some Developments in Improved Methods for the Measurement of the Spectral Irradiances of Solar Simulators”, NASA Report No. CR–201, April1965.

Waters, W. R.

R. Stair, W. E. Schneider, W. R. Waters, J. K. Jackson, R. E. Brown, “Some Developments in Improved Methods for the Measurement of the Spectral Irradiances of Solar Simulators”, NASA Report No. CR–201, April1965.

Appl. Opt.

Bul. Bur. Std.

W. W. Coblentz, Bul. Bur. Std. 11, 98 (1941) S 227.

Bull. Bur. Std.

W. W. Coblentz, W. B. Emerson, Bull. Bur. Std. 12, 503 (1916) S 261.

J. Opt. Soc. Am.

J. Res. Natl. Bur. Std.

R. Stair, W. O. Smith, J. Res. Natl. Bur. Std. 30, 449 (1943) RP 1543.
[CrossRef]

Natl. Bur. Std. J. Res.

R. Stair, R. G. Johnston, E. W. Halbach, Natl. Bur. Std. J. Res. 64A, 291 (1960).
[CrossRef]

Physica

J. C. DeVos, Physica 20, 690 (1954).
[CrossRef]

Tellus

A. K. Angström, Tellus 10, 342 (1958).
[CrossRef]

Other

J. R. Hickey, “Correlation of Monochromator and Filter Radiometry Determinations of the Spectral Distribution in Large Simulators,” Proceedings IES and ASTM International Symposium on Solar Radiation, Los Angeles, January 1965. (Institute of Environmental Sciences, Mount Prospect, Ill.)

G. C. Goldman, “Spectral Measurements by the Filter Method on Lewis Carbon-Arc Solar Simulators,” NASA Lewis Research Center Report, 1964.

R. Stair, W. E. Schneider, W. R. Waters, J. K. Jackson, R. E. Brown, “Some Developments in Improved Methods for the Measurement of the Spectral Irradiances of Solar Simulators”, NASA Report No. CR–201, April1965.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optical layout of monochromator and block diagram of prism spectroradiometer.

Fig. 2
Fig. 2

Block diagram of photoelectric filter spectroradiometer.

Fig. 3
Fig. 3

(a) Spectral irradiance of 1000-W quartz bromine No. 1 from 250 nm to 750 nm. (b) Spectral irradiance of 1000-W qartz bromine No. 1 from 0.7 μ to 2.5 μ.

Fig. 4
Fig. 4

(a) Spectral irradiance of 1000-W frosted quartz bromine No. 1 from 250 nm to 750 nm. (b) Spectral irradiance of 1000-W frosted quartz bromine No. 1 from 0.7 μ to 2.5 μ.

Fig. 5
Fig. 5

(a) Spectral irradiance of 500-W quartz iodine in aluminum reflector from 250 nm to 750 nm. (b) Spectral irradiance of 500-W quartz iodine in aluminum reflector from 0.7 μ to 2.5 μ.

Fig. 6
Fig. 6

(a) Spectral irradiance of 2500-W xenon arc No. 1 from 250 nm to 750 nm. (b) Spectral irradiance of 2500-W xenon arc No. 1 from 0.7 μ to 2.5 μ.

Fig. 7
Fig. 7

(a) Spectral irradiance of 2500-W HgXe arc No. 1 from 250 nm to 750 nm. (b) Spectral irradiance of 2500-W HgXe arc No. 1 from 0.7 μ to 2.5 μ.

Fig. 8
Fig. 8

(a) Spectral irradiance of 2500-W krypton arc No. 1 from 250 nm to 750 nm. (b) Spectral irradiance of 2500-W krypton arc No. 1 from 0.7 μ to 2.5 μ.

Fig. 9
Fig. 9

(a) Spectral irradiance of 2500-W krypton arc No. 2 from 250 nm to 750 nm. (b) Spectral irradiance of 2500-W krypton arc No. 2 from 0.7 μ to 2.5 μ.

Tables (3)

Tables Icon

Table I Filter Band Passes

Tables Icon

Table II Effective Wavelengths of Filters when Used with a Photomultiplier and Several Sources

Tables Icon

Table III Effective Wavelengths of Filters when Used with a PbS Cell and Several Sources

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E λ = E λ S D G τ S / D S G S τ ,
λ eff = λ 1 λ 2 R ( λ ) τ ( λ ) E λ λ d λ λ 1 λ 2 R ( λ ) τ ( λ ) E λ d λ ,
E ( λ eff ) = ( R x / R std ) E λ eff ,

Metrics