Abstract

Far ir Fabry-Perot type interference filters consisting of two parallel, closely spaced metal meshes have been reported by others. Using improved techniques, filters of this type have been fabricated with larger finesse and peak transmittance. Measured transmittance curves, obtained with the Aerospace lamellar grating interferometer have led to transmittance peaks whose sharpness appears to be limited principally by the beam convergence angle within the instrument (8°). From the measured peaks, finesses as large as 100 are obtained. Available mesh materials permit the construction of filters for any frequency from 10 cm−1 (or lower) to at least 200 cm−1. These will require absorbing components to eliminate unwanted harmonics.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. F. Renk, L. Genzel, Appl. Opt. 1, 643 (1962).
    [CrossRef]
  2. A. Mitsuishi, Y. Otsuka, E. S. Fujita, H. Yoshinaga, J. Appl. Phys. (Japan) 2, 574 (1963).
    [CrossRef]
  3. R. Ulrich, K. F. Renk, L. Genzel, IEEE Trans. MTT-11, 363 (1963).
  4. W. Culshaw, IEEE Trans. MTT-8, 182 (1960); IEEE Trans. MTT-9, 135 (1961); IEEE Trans. MTT-10, 331 (1962).
  5. R. T. Hall, D. Vrabec, J. M. Dowling, Appl. Opt. 5, 1147 (1966).
    [CrossRef] [PubMed]
  6. E. A. Lewis, J. P. Casey, J. Appl. Phys. 23, 605 (1952).
    [CrossRef]
  7. J. P. Casey, E. A. Lewis, J. Opt. Soc. Am. 42, 971 (1952).
    [CrossRef]
  8. N. Markuvitz, Waveguide Handbook (McGraw-Hill Book Co., Inc., New York, 1951), p. 208.
  9. W. Culshaw, IEEE Trans. MTT-7, 221 (1959).
  10. P. Vogel, L. Genzel, Infrared Phys. 4, 257 (1964).
    [CrossRef]
  11. E. E. Russell, E. E. Bell, Infrared Phys. 6, 75 (1966).
    [CrossRef]
  12. R. Ulrich, Infrared Phys. 7, 37 (1967).
    [CrossRef]
  13. J. Munushian, Univ. Calif., Berkeley, Electron. Res. Lab. Rept.60, No. 126 (1954) (AD 57757).

1967 (1)

R. Ulrich, Infrared Phys. 7, 37 (1967).
[CrossRef]

1966 (2)

1964 (1)

P. Vogel, L. Genzel, Infrared Phys. 4, 257 (1964).
[CrossRef]

1963 (2)

A. Mitsuishi, Y. Otsuka, E. S. Fujita, H. Yoshinaga, J. Appl. Phys. (Japan) 2, 574 (1963).
[CrossRef]

R. Ulrich, K. F. Renk, L. Genzel, IEEE Trans. MTT-11, 363 (1963).

1962 (1)

1960 (1)

W. Culshaw, IEEE Trans. MTT-8, 182 (1960); IEEE Trans. MTT-9, 135 (1961); IEEE Trans. MTT-10, 331 (1962).

1959 (1)

W. Culshaw, IEEE Trans. MTT-7, 221 (1959).

1952 (2)

E. A. Lewis, J. P. Casey, J. Appl. Phys. 23, 605 (1952).
[CrossRef]

J. P. Casey, E. A. Lewis, J. Opt. Soc. Am. 42, 971 (1952).
[CrossRef]

Bell, E. E.

E. E. Russell, E. E. Bell, Infrared Phys. 6, 75 (1966).
[CrossRef]

Casey, J. P.

E. A. Lewis, J. P. Casey, J. Appl. Phys. 23, 605 (1952).
[CrossRef]

J. P. Casey, E. A. Lewis, J. Opt. Soc. Am. 42, 971 (1952).
[CrossRef]

Culshaw, W.

W. Culshaw, IEEE Trans. MTT-8, 182 (1960); IEEE Trans. MTT-9, 135 (1961); IEEE Trans. MTT-10, 331 (1962).

W. Culshaw, IEEE Trans. MTT-7, 221 (1959).

Dowling, J. M.

Fujita, E. S.

A. Mitsuishi, Y. Otsuka, E. S. Fujita, H. Yoshinaga, J. Appl. Phys. (Japan) 2, 574 (1963).
[CrossRef]

Genzel, L.

P. Vogel, L. Genzel, Infrared Phys. 4, 257 (1964).
[CrossRef]

R. Ulrich, K. F. Renk, L. Genzel, IEEE Trans. MTT-11, 363 (1963).

K. F. Renk, L. Genzel, Appl. Opt. 1, 643 (1962).
[CrossRef]

Hall, R. T.

Lewis, E. A.

E. A. Lewis, J. P. Casey, J. Appl. Phys. 23, 605 (1952).
[CrossRef]

J. P. Casey, E. A. Lewis, J. Opt. Soc. Am. 42, 971 (1952).
[CrossRef]

Markuvitz, N.

N. Markuvitz, Waveguide Handbook (McGraw-Hill Book Co., Inc., New York, 1951), p. 208.

Mitsuishi, A.

A. Mitsuishi, Y. Otsuka, E. S. Fujita, H. Yoshinaga, J. Appl. Phys. (Japan) 2, 574 (1963).
[CrossRef]

Munushian, J.

J. Munushian, Univ. Calif., Berkeley, Electron. Res. Lab. Rept.60, No. 126 (1954) (AD 57757).

Otsuka, Y.

A. Mitsuishi, Y. Otsuka, E. S. Fujita, H. Yoshinaga, J. Appl. Phys. (Japan) 2, 574 (1963).
[CrossRef]

Renk, K. F.

R. Ulrich, K. F. Renk, L. Genzel, IEEE Trans. MTT-11, 363 (1963).

K. F. Renk, L. Genzel, Appl. Opt. 1, 643 (1962).
[CrossRef]

Russell, E. E.

E. E. Russell, E. E. Bell, Infrared Phys. 6, 75 (1966).
[CrossRef]

Ulrich, R.

R. Ulrich, Infrared Phys. 7, 37 (1967).
[CrossRef]

R. Ulrich, K. F. Renk, L. Genzel, IEEE Trans. MTT-11, 363 (1963).

Vogel, P.

P. Vogel, L. Genzel, Infrared Phys. 4, 257 (1964).
[CrossRef]

Vrabec, D.

Yoshinaga, H.

A. Mitsuishi, Y. Otsuka, E. S. Fujita, H. Yoshinaga, J. Appl. Phys. (Japan) 2, 574 (1963).
[CrossRef]

Appl. Opt. (2)

IEEE Trans. (3)

R. Ulrich, K. F. Renk, L. Genzel, IEEE Trans. MTT-11, 363 (1963).

W. Culshaw, IEEE Trans. MTT-8, 182 (1960); IEEE Trans. MTT-9, 135 (1961); IEEE Trans. MTT-10, 331 (1962).

W. Culshaw, IEEE Trans. MTT-7, 221 (1959).

Infrared Phys. (3)

P. Vogel, L. Genzel, Infrared Phys. 4, 257 (1964).
[CrossRef]

E. E. Russell, E. E. Bell, Infrared Phys. 6, 75 (1966).
[CrossRef]

R. Ulrich, Infrared Phys. 7, 37 (1967).
[CrossRef]

J. Appl. Phys. (1)

E. A. Lewis, J. P. Casey, J. Appl. Phys. 23, 605 (1952).
[CrossRef]

J. Appl. Phys. (Japan) (1)

A. Mitsuishi, Y. Otsuka, E. S. Fujita, H. Yoshinaga, J. Appl. Phys. (Japan) 2, 574 (1963).
[CrossRef]

J. Opt. Soc. Am. (1)

Other (2)

N. Markuvitz, Waveguide Handbook (McGraw-Hill Book Co., Inc., New York, 1951), p. 208.

J. Munushian, Univ. Calif., Berkeley, Electron. Res. Lab. Rept.60, No. 126 (1954) (AD 57757).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Details of filter construction. The spacer is cut from precision stainless steel shim stock and the burrs carefully removed. The faces of the end pieces touching the grids are machined and lapped flat.

Fig. 2
Fig. 2

Photograph of a completed filter.

Fig. 3
Fig. 3

Transmission T of single wire mesh as a function of reduced frequency νd, where d is the spacing between openings. The dashed lines are calculated from Eq. (6) for the largest and smallest values of ρ appearing in Table I. □ 250 mesh (d = 102 μ) copper (Buckbee-Mears ruling 25027). △ 500 mesh (d = 51 μ) nickel (probably ruling number 5133). ○ 500 mesh (d = 51 μ) copper (ruling number 509). ● 750 mesh (d = 34 μ) copper (ruling number 761).

Fig. 4
Fig. 4

Schematic diagram of meshes showing dimensions used in Eq. (6). (a) round holes, (b) square holes.

Fig. 5
Fig. 5

Energy throughput of a wire mesh filter consisting of two 740 mesh screens separated by a 0.0805-cm spacer.

Fig. 6
Fig. 6

Measured finesse for 750 mesh filters of different spacing. ● 0.0142-cm spacer, narrow angle; □ 0.038-cm spacer, narrow angle; △ 0.0805-cm spacer, narrow angle. All units 4° beam half angle. ○ same filter as △ except 8° half angle in beam.

Fig. 7
Fig. 7

Reduction in finesse for 750 mesh 0.081-cm space filter owing to limitations of measuring technique. □ finesse as calculated from theory using measured transmittance values of Fig. 3. ○ calculated finesse as corrected for converging beam. △ calculated finesse as corrected for converging beam and for finite resolution. ● experimentally measured finesse.

Fig. 8
Fig. 8

Transmission as a function of frequency for a 750 mesh 0.081-cm filter for two different beam convergence angles. ● beam convergence about 8°. ○ beam convergence about 4°.

Fig. 9
Fig. 9

Calculated transmission halfway between peaks of a 750 mesh filter.

Tables (1)

Tables Icon

Table I Parameters for Calculation of Relative Admittance of Wire Meshes

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T = t 2 / [ ( 1 - r ) 2 + 4 r sin 2 δ / 2 ] ,
δ = ( 2 π ) 2 ν b μ cos θ + 2 ϕ ,
T = t 2 / ( t 2 + 4 r sin 2 δ / 2 ) = [ 1 + ( 4 r / t 2 ) sin 2 δ / 2 ] - 1 .
ν max = ( m π - ϕ ) / ( 2 π b cos θ ) .
F = [ π ( r ) 1 2 / ( 1 - r ) ] = [ π ( r ) 1 2 / t ]
B / Y 0 = A ( f , ρ ) / ν d - ν d D ( f , ρ ) ,
A ( f , ρ ) = 3 / [ 8 π ρ 3 ( f ) 1 2 ] , D ( f , ρ ) = 2 ( 6 / π ρ ) 2 n = 0 m = 0 ( n 2 m f + n m 2 / 2 ) ( m 2 + f n 2 ) 5 2 × J 1 2 [ ρ π ( m 2 + f n 2 ) ] 1 2 , J 1 ( x ) = ( sin x / x - cos x ) / x ,
m , n = { 1 m , n = 0 2 m , n 0.

Metrics