Abstract

Optical communications experiments at 6328 Å, comparing the fading characteristics of coherent and noncoherent optical detection, have been performed over a 1-km real atmospheric path in different weather conditions. The results show that fading is less severe for noncoherent detection and that the fading characteristic for both types vary significantly with weather conditions. In addition, the similarity of optical FM to rf FM is demonstrated. The measurements were performed using a remote laser transmitter and an optical superheterodyne receiver operating simultaneously in both a coherent and noncoherent detection mode. The receiver, tunable over a frequency range of 1 GHz at the IF difference frequency of 30 MHz, has automatic frequency control and also uses a precision angle tracking servo to maintain receiver spatial alignment with a remote transmitter. The angle and frequency tracking capability permit operation between moving transmitter and receiver terminals.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Henry C. King, The History of the Telescope (Sky Publishing Corporation, Cambridge, Mass., 1959).
  2. R. F. Lucy, C. J. Peters, E. J. McGann, K. T. Lang, Appl. Opt. 5, 517 (1966).
    [CrossRef] [PubMed]
  3. E. H. Linfoot, Recent Advances in Optics (Oxford University Press, London, 1958), p. 277.
  4. A. E. Seigman, Appl. Opt. 5, 1588 (1966).
    [CrossRef]
  5. G. Biernson, R. F. Lucy, Proc. IEEE 51, 202 (1963).
    [CrossRef]
  6. I. Goldstein, P. A. Miles, A. ChabotProc. IEEE 53, 1172 (1965).
    [CrossRef]
  7. P. Beckmann, J. Res. Nat. Bur. Std., 69D, 629 (1965).
  8. S. Gardner, IEEE Intern. Conv. Record 12, part 6, 337 (1964).
  9. G. O. Reynolds, T. J. Skinner, J. Opt. Soc. Am. 54, 1302 (1964).
    [CrossRef]
  10. B. Cooper, IEEE Spectrum, 3, 83 (1966).
    [CrossRef]
  11. H. Hodara, Proc. IEEE, 54, 368 (1966).
    [CrossRef]
  12. J. L. Davis, Appl. Opt. 5, 139 (1966).
    [CrossRef] [PubMed]
  13. S. E. Miller, L. C. Tillotson, Appl. Opt. 5, 1538 (1966).
    [CrossRef] [PubMed]
  14. R. F. Lucy, Northeast Electronics Research and Engineering Meeting Record4–6, Nov. 1964, Boston, p. 172 (1964).

1966 (6)

1965 (2)

I. Goldstein, P. A. Miles, A. ChabotProc. IEEE 53, 1172 (1965).
[CrossRef]

P. Beckmann, J. Res. Nat. Bur. Std., 69D, 629 (1965).

1964 (2)

S. Gardner, IEEE Intern. Conv. Record 12, part 6, 337 (1964).

G. O. Reynolds, T. J. Skinner, J. Opt. Soc. Am. 54, 1302 (1964).
[CrossRef]

1963 (1)

G. Biernson, R. F. Lucy, Proc. IEEE 51, 202 (1963).
[CrossRef]

Beckmann, P.

P. Beckmann, J. Res. Nat. Bur. Std., 69D, 629 (1965).

Biernson, G.

G. Biernson, R. F. Lucy, Proc. IEEE 51, 202 (1963).
[CrossRef]

Chabot, A.

I. Goldstein, P. A. Miles, A. ChabotProc. IEEE 53, 1172 (1965).
[CrossRef]

Cooper, B.

B. Cooper, IEEE Spectrum, 3, 83 (1966).
[CrossRef]

Davis, J. L.

Gardner, S.

S. Gardner, IEEE Intern. Conv. Record 12, part 6, 337 (1964).

Goldstein, I.

I. Goldstein, P. A. Miles, A. ChabotProc. IEEE 53, 1172 (1965).
[CrossRef]

Hodara, H.

H. Hodara, Proc. IEEE, 54, 368 (1966).
[CrossRef]

King, Henry C.

Henry C. King, The History of the Telescope (Sky Publishing Corporation, Cambridge, Mass., 1959).

Lang, K. T.

Linfoot, E. H.

E. H. Linfoot, Recent Advances in Optics (Oxford University Press, London, 1958), p. 277.

Lucy, R. F.

R. F. Lucy, C. J. Peters, E. J. McGann, K. T. Lang, Appl. Opt. 5, 517 (1966).
[CrossRef] [PubMed]

G. Biernson, R. F. Lucy, Proc. IEEE 51, 202 (1963).
[CrossRef]

R. F. Lucy, Northeast Electronics Research and Engineering Meeting Record4–6, Nov. 1964, Boston, p. 172 (1964).

McGann, E. J.

Miles, P. A.

I. Goldstein, P. A. Miles, A. ChabotProc. IEEE 53, 1172 (1965).
[CrossRef]

Miller, S. E.

Peters, C. J.

Reynolds, G. O.

Seigman, A. E.

Skinner, T. J.

Tillotson, L. C.

Appl. Opt. (4)

IEEE Intern. Conv. Record (1)

S. Gardner, IEEE Intern. Conv. Record 12, part 6, 337 (1964).

IEEE Spectrum (1)

B. Cooper, IEEE Spectrum, 3, 83 (1966).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Res. Nat. Bur. Std. (1)

P. Beckmann, J. Res. Nat. Bur. Std., 69D, 629 (1965).

Proc. IEEE (3)

H. Hodara, Proc. IEEE, 54, 368 (1966).
[CrossRef]

G. Biernson, R. F. Lucy, Proc. IEEE 51, 202 (1963).
[CrossRef]

I. Goldstein, P. A. Miles, A. ChabotProc. IEEE 53, 1172 (1965).
[CrossRef]

Other (3)

Henry C. King, The History of the Telescope (Sky Publishing Corporation, Cambridge, Mass., 1959).

E. H. Linfoot, Recent Advances in Optics (Oxford University Press, London, 1958), p. 277.

R. F. Lucy, Northeast Electronics Research and Engineering Meeting Record4–6, Nov. 1964, Boston, p. 172 (1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Optical superheterodyne receiver.

Fig. 2
Fig. 2

Optical superheterodyne receiver optics.

Fig. 3
Fig. 3

System electronics.

Fig. 4
Fig. 4

Optical mixing experiments. (a) Two spherical waves; 400 cm radius of curvature; 1600 cm radius of curvature (collinear). (b) Two spherical waves; 400 cm radius of curvature; 1600 cm radius of curvature; 70 μrad tilt.

Fig. 5
Fig. 5

Angular sensitivity of primary paraboloid mirror.

Fig. 6
Fig. 6

Coherent laser communications experiments.

Fig. 7
Fig. 7

Comparison of probability density functions for signal fading for noncoherent and coherent optical detection.

Fig. 8
Fig. 8

Comparison of amplitude fading spectrum for noncoherent optical detection.

Fig. 9
Fig. 9

Spectrum of frequency modulated laser signal propagated over 1-km atmosphere path and received by optical superheterodyne receiver. A. Carrier heterodyned to 30 mHz IF. B. 1-MHz modulation sidebands.

Fig. 10
Fig. 10

Quieting effect of FM optical superheterodyne receiver disciminator output; (a) not tuned, (b) tuned.

Fig. 11
Fig. 11

Dependence of probability density functions for power signal on aperture diameter.

Tables (4)

Tables Icon

Table I Measured Experiment Parameters

Tables Icon

Table II Calculated Experiment Values

Tables Icon

Table III Heterodyne Efficiency for Various Weather Conditions with 20.3-cm Aperture

Tables Icon

Table IV Heterodyne Efficiency for Various Apertures

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

e s o e n o = 1 ( Q P s h ν Δ f ) ½ ,
f ˙ τ c = Δ f c / 2 ,
δ f = Δ f c e s o / e n o .
P s = ( 2 2 P T D 2 c ) / ( θ 2 R 2 ) ,
s o e n o = 1 ( P s Q h ν Δ f ) ½ .

Metrics