Abstract

The design of a grid polarizer is discussed and the effect of supporting it on various substrates is evaluated using a transmission line analogy. A method of making such a grid polarizer by photolithographic techniques is described, and measurements on a device suitable for use at wavelengths between 20 μ and several hundred microns are presented. Their performance compares favorably with polarizers made by other methods.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Mitsuishi, Y. Yamada, S. Fujita, H. Yoshinaga, J. Opt. Soc. Am. 50, 433 (1960).
    [CrossRef]
  2. D. F. Edwards, M. J. Bruemmer, J. Opt. Soc. Am. 49, 860 (1959).
    [CrossRef]
  3. T. Larsen, Inst. Radio Engrs. Trans. MTT-10, 191 (1962).
  4. W. K. Pursley, doctoral thesis, University of Michigan (1956).
  5. G. R. Bird, M. Parrish, J. Opt. Soc. Am. 50, 886 (1960).
    [CrossRef]
  6. M. Hass, M. O’Hara, Appl. Opt. 4, 1027 (1965).
    [CrossRef]
  7. J. R. Wait, Inst. Radio Engrs. Trans. MTT-5, 99 (1957).
  8. N. Marcuvitz, Waveguide Handbook, M.I.T. Rad. Lab. Ser. (McGraw-Hill, New York, 1951), p. 218.
  9. G. N. Harding, M. F. Kimmitt, J. H. Ludlow, P. Porteous, A. C. Prior, V. Roberts, Proc. Phys. Soc. 77, 1069 (1961).
    [CrossRef]
  10. G. Rupprecht, D. M. Ginsberg, J. D. Leslie, J. Opt. Soc. Am. 52, 665 (1962).
    [CrossRef]

1965

1962

T. Larsen, Inst. Radio Engrs. Trans. MTT-10, 191 (1962).

G. Rupprecht, D. M. Ginsberg, J. D. Leslie, J. Opt. Soc. Am. 52, 665 (1962).
[CrossRef]

1961

G. N. Harding, M. F. Kimmitt, J. H. Ludlow, P. Porteous, A. C. Prior, V. Roberts, Proc. Phys. Soc. 77, 1069 (1961).
[CrossRef]

1960

1959

1957

J. R. Wait, Inst. Radio Engrs. Trans. MTT-5, 99 (1957).

Bird, G. R.

Bruemmer, M. J.

Edwards, D. F.

Fujita, S.

Ginsberg, D. M.

Harding, G. N.

G. N. Harding, M. F. Kimmitt, J. H. Ludlow, P. Porteous, A. C. Prior, V. Roberts, Proc. Phys. Soc. 77, 1069 (1961).
[CrossRef]

Hass, M.

Kimmitt, M. F.

G. N. Harding, M. F. Kimmitt, J. H. Ludlow, P. Porteous, A. C. Prior, V. Roberts, Proc. Phys. Soc. 77, 1069 (1961).
[CrossRef]

Larsen, T.

T. Larsen, Inst. Radio Engrs. Trans. MTT-10, 191 (1962).

Leslie, J. D.

Ludlow, J. H.

G. N. Harding, M. F. Kimmitt, J. H. Ludlow, P. Porteous, A. C. Prior, V. Roberts, Proc. Phys. Soc. 77, 1069 (1961).
[CrossRef]

Marcuvitz, N.

N. Marcuvitz, Waveguide Handbook, M.I.T. Rad. Lab. Ser. (McGraw-Hill, New York, 1951), p. 218.

Mitsuishi, A.

O’Hara, M.

Parrish, M.

Porteous, P.

G. N. Harding, M. F. Kimmitt, J. H. Ludlow, P. Porteous, A. C. Prior, V. Roberts, Proc. Phys. Soc. 77, 1069 (1961).
[CrossRef]

Prior, A. C.

G. N. Harding, M. F. Kimmitt, J. H. Ludlow, P. Porteous, A. C. Prior, V. Roberts, Proc. Phys. Soc. 77, 1069 (1961).
[CrossRef]

Pursley, W. K.

W. K. Pursley, doctoral thesis, University of Michigan (1956).

Roberts, V.

G. N. Harding, M. F. Kimmitt, J. H. Ludlow, P. Porteous, A. C. Prior, V. Roberts, Proc. Phys. Soc. 77, 1069 (1961).
[CrossRef]

Rupprecht, G.

Wait, J. R.

J. R. Wait, Inst. Radio Engrs. Trans. MTT-5, 99 (1957).

Yamada, Y.

Yoshinaga, H.

Appl. Opt.

Inst. Radio Engrs. Trans.

T. Larsen, Inst. Radio Engrs. Trans. MTT-10, 191 (1962).

J. R. Wait, Inst. Radio Engrs. Trans. MTT-5, 99 (1957).

J. Opt. Soc. Am.

Proc. Phys. Soc.

G. N. Harding, M. F. Kimmitt, J. H. Ludlow, P. Porteous, A. C. Prior, V. Roberts, Proc. Phys. Soc. 77, 1069 (1961).
[CrossRef]

Other

N. Marcuvitz, Waveguide Handbook, M.I.T. Rad. Lab. Ser. (McGraw-Hill, New York, 1951), p. 218.

W. K. Pursley, doctoral thesis, University of Michigan (1956).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Equivalent circuit of a grid on a substrate.

Fig. 2
Fig. 2

Predicted variation of k1, k2, and P with a/d for λ/d = 5 (—) and λ/d = 10 (- - -).

Fig. 3
Fig. 3

Predicted variation of k1, k2, and P for polarizers with d/a = 2 ⋯ Unsupported grid (n = 1.0). — Grid on polyethylene (n = 1.5). - - - Grid on silicon (n = 3.4).

Fig. 4
Fig. 4

Equivalent circuit of a grid on a bloomed substrate.

Fig. 5
Fig. 5

A typical 4-μ period polarizer.

Fig. 6
Fig. 6

Transmission of a polarizer on a polyethylene substrate, a = 4.2 μ, d = 10 μ. — Theoretical values assuming negligible absorption in polyethylene. × Measured values. Measured values of transmission of polyethylene substrate (no grid).

Tables (1)

Tables Icon

Table I Transmittance of 4-μ Period Grid Polarizers

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Z s = 1 n Z 0 ,
Z g = j X g
( X g Z 0 ) = d λ [ ln ( csc π a 2 d ) + Q 2 cos 4 π a / 2 d 1 + Q 2 sin 4 π a / 2 d + 1 16 ( d λ ) 2 ( 1 - 3 sin 2 π a 2 d ) 2 cos 4 π a 2 d ] ,
Q 2 = [ 1 - ( d / λ ) 2 ] - 1 / 2 - 1.
( Z 0 X g ) = 4 d λ { ln [ csc π ( d - a ) 2 d ] + Q 2 cos 4 π ( d - a ) / 2 d 1 + Q 2 sin 4 [ π ( d - a ) / 2 d ] + 1 16 ( d λ ) 2 [ 1 - 3 sin 2 π ( d - a ) 2 d ] 2 cos 4 π ( d - a ) 2 d } ,
k 1 = 4 n ( X g / Z 0 ) 2 ( 1 + n ) 2 ( X g / Z 0 ) 2 + 1
k 2 = 4 n ( X g / Z 0 ) 2 ( 1 + n ) 2 ( X g / Z 0 ) 2 + 1 .
k 1 = 4 ( X g / Z 0 ) 2 4 ( X g / Z 0 ) 2 + 1 , k 2 = 4 ( X g / Z 0 ) 2 4 ( X g / Z 0 ) 2 + 1 .
k 1 , 2 = 4 n 2 ( X g / Z 0 ) , 2 4 n 2 ( X g / Z 0 ) , 2 + 1 .
k 1 = E H + E V 2 E 0 { 1 + [ 1 - 4 E E 0 ( E H + E V ) 2 ] 1 / 2 } , k 2 = E H + E V 2 E 0 { 1 - [ 1 - 4 E E 0 ( E H + E V ) 2 ] 1 / 2 } .

Metrics