Abstract

Two and three primary colors derived from an He–Ne gas laser and an argon gas laser were employed in recording and reconstructing holograms. For the tricolor case it is possible to reconstruct a three-dimensional multicolor image which possesses almost all the natural hues of the original object. Each wavelength generates an independent fringe system that is recorded on a photographic plate with a thick emulsion that constitutes a three-dimensional recording medium. In reconstruction, each fringe system diffracts light in a manner satisfying the Bragg relation for a particular reconstructing wavelength. If the reconstruction wavelengths are the same as the original wavelengths used to record the fringe systems, the result is a multicolor reconstruction possessing few or no ghost images. In our experiments, the angle between the object beam and the reference beam was greater than 100°, and the photographic plates were oriented so that the fringe surfaces were approximately perpendicular to the emulsion surface. This minimized the deleterious effects of single-color, ghost image formation and shrinkage during development. Finally, a method of synthesizing multicolor scenes using a multiple-exposure recording with one wavelength and reconstructing with several wavelengths is described.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. N. Leith, J. Upatnieks, J. Opt. Soc. Am. 54, 1295 (1964).
    [CrossRef]
  2. A. W. Lohmann, Appl. Opt. 4, 1667 (1965).
    [CrossRef]
  3. L. Mandel, J. Opt. Soc. Am. 55, 1697 (1965).
    [CrossRef]
  4. K. S. Pennington, L. H. Lin, Appl. Phys. Letters 7, 56 (1965).
    [CrossRef]
  5. P. J. van Heerden, Appl. Opt. 2, 393 (1963).
    [CrossRef]
  6. Y. N. Denisyuk, Opt. Spectry. 15, 279 (1963).
  7. E. N. Leith, A. Kozma, J. Upatnieks, N. Massey, J. Marks, Appl. Opt. 5, 1303 (1966).
    [CrossRef] [PubMed]
  8. A. A. Friesem, R. J. Fedorowicz, Appl. Opt. 5, 1085 (1966).
    [CrossRef] [PubMed]
  9. R. W. Meier, J. Opt. Soc. Am. 55, 987 (1965).
    [CrossRef]
  10. A. Kozma, J. Opt. Soc. Am. 56, 428 (1966).
    [CrossRef]
  11. A. A. Friesem, J. S. Zelenka, J. Opt. Soc. Am. 56, 542 (1966).
  12. R. W. Ditchburn, Light (Interscience Publishers, New York, 1963), p. 403.
  13. G. Lippmann, J. Phys. 3, 97 (1894).

1966 (4)

1965 (4)

1964 (1)

1963 (2)

P. J. van Heerden, Appl. Opt. 2, 393 (1963).
[CrossRef]

Y. N. Denisyuk, Opt. Spectry. 15, 279 (1963).

1894 (1)

G. Lippmann, J. Phys. 3, 97 (1894).

Denisyuk, Y. N.

Y. N. Denisyuk, Opt. Spectry. 15, 279 (1963).

Ditchburn, R. W.

R. W. Ditchburn, Light (Interscience Publishers, New York, 1963), p. 403.

Fedorowicz, R. J.

Friesem, A. A.

A. A. Friesem, R. J. Fedorowicz, Appl. Opt. 5, 1085 (1966).
[CrossRef] [PubMed]

A. A. Friesem, J. S. Zelenka, J. Opt. Soc. Am. 56, 542 (1966).

Kozma, A.

Leith, E. N.

Lin, L. H.

K. S. Pennington, L. H. Lin, Appl. Phys. Letters 7, 56 (1965).
[CrossRef]

Lippmann, G.

G. Lippmann, J. Phys. 3, 97 (1894).

Lohmann, A. W.

Mandel, L.

Marks, J.

Massey, N.

Meier, R. W.

Pennington, K. S.

K. S. Pennington, L. H. Lin, Appl. Phys. Letters 7, 56 (1965).
[CrossRef]

Upatnieks, J.

van Heerden, P. J.

Zelenka, J. S.

A. A. Friesem, J. S. Zelenka, J. Opt. Soc. Am. 56, 542 (1966).

Appl. Opt. (4)

Appl. Phys. Letters (1)

K. S. Pennington, L. H. Lin, Appl. Phys. Letters 7, 56 (1965).
[CrossRef]

J. Opt. Soc. Am. (5)

J. Phys. (1)

G. Lippmann, J. Phys. 3, 97 (1894).

Opt. Spectry. (1)

Y. N. Denisyuk, Opt. Spectry. 15, 279 (1963).

Other (1)

R. W. Ditchburn, Light (Interscience Publishers, New York, 1963), p. 403.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of object and source locations relative to a hologram plate located in the xy plane about the origin.

Fig. 2
Fig. 2

Multicolor wavefront reconstruction-hologram recording system. The light source is an argon laser A and an He–Ne laser H. The beams from the two lasers are combined with beam splitter B and directed by mirrors M to object O and photographic plate P. The pinhole assemblies PA, each comprised of microscope objective and a 15-μ pinhole, produce divergent beams.

Fig. 3
Fig. 3

Typical appearance of hologram used for multicolor wavefront reconstruction. All holograms were black and white and made with Kodak Spectroscopic Plates, type 649F.

Fig. 4
Fig. 4

Photograph of three-dimensional reconstruction of multi-color objects. Model car: wavelengths used in the recording and reconstruction were 6328 Å and 5145 Å.

Fig. 5
Fig. 5

Photographs of three-dimensional reconstruction of multicolor objects. The wavelengths used in the recording and reconstruction were 6328 Å, 5145 Å, and 4880 Å. (a) Vase. (b) Array of sticks.

Fig. 6
Fig. 6

(a) All additive mixtures of components 6328 Å, 5145 Å, and 4880 Å are represented by points within the inscribed triangle. (b) All additive mixtures of components 6328 Å, 5145 Å, 4880 Å, 4770 Å., and 4579 Å are represented by points within the inscribed polygon.

Fig. 7
Fig. 7

Synthesized multicolor reconstruction of three-dimensional objects. Recording wavelength was 6328 Å and the reconstructing wavelengths 6328 Å and 5145 Å. The photograph was taken with the camera lens set at f/2.8 which decreased the depth of focus. The camera was focused on the top object.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

o = i = 1 n o i
r = j = 1 n r j .
I = o + r 2 δ i j = | i = 1 n o i + j = 1 n r j | 2 δ i j ,
I = i = 1 n ( o i 2 + r i 2 + o i * r i + o i r i * ) .
c = j = 1 n c j ,
H = j = 1 n c j i = 1 n ( o i 2 + r i 2 + o i * r i + o i r i * ) .
i = 1 n j = 1 n o i * r i c j
i = 1 n j = 1 n o i r i * c j
Φ i j = 2 π λ j 1 2 { ( x 2 + y 2 ) ( 1 / z j ) ± ( u i j / z o ) ( u i j / z i ) - 2 x [ ( x j / z i ) ± ( u i j x o / z o ) ( u i j x i / z i ) ] - 2 y [ ( y j / z j ) ± ( u i j y o / z o ) ( u i j y i / z i ) ] } ,
M ang i j = ± u i j ,
M lat i j = [ 1 ± ( z o / u i j z j ) - ( z o / z i ) ] - 1 ,
M long i j = - ( 1 / u i j ) { { 1 - z o [ ( 1 / u i j z j ) + ( 1 / z i ) ] } 2 } - 1 = - ( 1 / u i j ) M 2 lat i j .
M ang 11 = M ang 22 = M ang 33 , M lat 11 = M lat 22 = M lat 33 , M long 11 = M long 22 = M long 33 .
sin θ r - sin ( θ s + Δ ψ ) = - u ( sin θ s - sin θ r )
- cos ( θ r - θ s - Δ ψ ) + cos Δ ψ + 1 u cos ( θ r - θ s - Δ ψ ) - 1 u = 2 K / k c L [ cos ( θ s + Δ ψ ) ] ,

Metrics