Abstract

The present paper follows a previous one that dealt with the theoretical principles of a self modulating derivative optical spectrometer (SMODOS). In this paper the complete description is given of a prototype of such an instrument, namely, of its optical as well as electronic components. The project criteria are thoroughly discussed, and some examples of performance that demonstrate the power of the method are presented.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Bonfiglioli, P. Brovetto, Phys. Letters 5, 248 (1963); Appl. Opt. 3, 1417 (1964).
    [CrossRef]
  2. We must apologize here for having omitted the quotation in our previous paper of a note which we did not know existed, published by C. Stacy French of the Department of Plant Biology at Stanford. Several years ago (see Year Book of the Carnegie Institution of Washington No. 54, 1954–55, p. 153, issued 9 December 1955) this author experimented with a derivative spectrophotometer using a vibrating mirror to modulate the wavelength of a light beam. Although the technical realization of Dr. French is different from ours, it must be stated clearly that the initial idea is the same.
  3. G. Bonfiglioli, P. Brovetto, Rev. Sci. Instr. 33, 1095 (1962).
    [CrossRef]
  4. J. F. Gibbons, H. S. Horn, Trans. IEEE CT-11, 378 (1964).

1964

J. F. Gibbons, H. S. Horn, Trans. IEEE CT-11, 378 (1964).

1963

G. Bonfiglioli, P. Brovetto, Phys. Letters 5, 248 (1963); Appl. Opt. 3, 1417 (1964).
[CrossRef]

1962

G. Bonfiglioli, P. Brovetto, Rev. Sci. Instr. 33, 1095 (1962).
[CrossRef]

Bonfiglioli, G.

G. Bonfiglioli, P. Brovetto, Phys. Letters 5, 248 (1963); Appl. Opt. 3, 1417 (1964).
[CrossRef]

G. Bonfiglioli, P. Brovetto, Rev. Sci. Instr. 33, 1095 (1962).
[CrossRef]

Brovetto, P.

G. Bonfiglioli, P. Brovetto, Phys. Letters 5, 248 (1963); Appl. Opt. 3, 1417 (1964).
[CrossRef]

G. Bonfiglioli, P. Brovetto, Rev. Sci. Instr. 33, 1095 (1962).
[CrossRef]

Gibbons, J. F.

J. F. Gibbons, H. S. Horn, Trans. IEEE CT-11, 378 (1964).

Horn, H. S.

J. F. Gibbons, H. S. Horn, Trans. IEEE CT-11, 378 (1964).

Phys. Letters

G. Bonfiglioli, P. Brovetto, Phys. Letters 5, 248 (1963); Appl. Opt. 3, 1417 (1964).
[CrossRef]

Rev. Sci. Instr.

G. Bonfiglioli, P. Brovetto, Rev. Sci. Instr. 33, 1095 (1962).
[CrossRef]

Trans. IEEE

J. F. Gibbons, H. S. Horn, Trans. IEEE CT-11, 378 (1964).

Year Book of the Carnegie Institution of Washington

We must apologize here for having omitted the quotation in our previous paper of a note which we did not know existed, published by C. Stacy French of the Department of Plant Biology at Stanford. Several years ago (see Year Book of the Carnegie Institution of Washington No. 54, 1954–55, p. 153, issued 9 December 1955) this author experimented with a derivative spectrophotometer using a vibrating mirror to modulate the wavelength of a light beam. Although the technical realization of Dr. French is different from ours, it must be stated clearly that the initial idea is the same.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

SMODOS general optical scheme and electronics block scheme.

Fig. 2
Fig. 2

Curve showing the percent residual unmatching of the couple of PM used in the instrument.

Fig. 3
Fig. 3

Scheme of the LOgarithmic Ratio Circuit. Input range: 0.8 μA–0.8 mA. Output ~0.1 V/decade.

Fig. 4
Fig. 4

Result of a dc test of the logarithmic response of the LORAC unit.

Fig. 5
Fig. 5

Curves (a) and (c) show the PM currents. Curves (b) and (d) show, respectively, their derivatives, under the conditions described in the text, for checking the performance of the LORAC (see Fig. 6).

Fig. 6
Fig. 6

Result of the check of the LORAC correct operation.

Fig. 7
Fig. 7

Effect of the PM mismatching.

Fig. 8
Fig. 8

Derivative of the dispersion function of the monochromator.

Fig. 9
Fig. 9

Effect of changing the mirror vibration amplitude on the resolution of a (Pr + Nd)(NO3)3 spectral band.

Fig. 10
Fig. 10

Optical density vs wavelength for an aqueous solution of (Pr + Nd)(NO3)3 (50 mg/cc) showing a complex band around 5200 Å.

Fig. 11
Fig. 11

Curves showing the absorption spectra of mixtures (Pr + Nd)(NO3)3 with a solution of 1.3 g/cc Cu(NO3)2 in H2O.

Fig. 12
Fig. 12

Derivative spectra of solutions of (P + Nd)(NO3)3 in Cu(NO3)2 solution.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

λ ( t , x ) = f ( x + k sin ω t ) = f ( x ) + ( d f / d x ) k sin ω t + ( d 2 f / d x 2 ) ( k 2 / 2 ) sin 2 ω t + ,
λ ( t , x 0 ) = f ( x 0 + k sin ω t ) = λ 0 + ( d f / d x 0 ) k sin ω t .
S ( λ 0 ) = k ( d f / d x 0 ) ( d δ / d λ ) λ 0 .
( i r - i s ) / i r = ( σ r - σ s ) / σ r
i 1 = c 1 x 1 x 2 I ( λ ) τ ( λ ) σ ( λ ) d f d x d x
i 2 = μ c 2 x 1 x 2 I ( λ ) σ ( λ ) d f d x d x ,
i 1 ( t ) = c 1 ( x 2 - x 1 ) I ( λ ) τ ( λ ) σ ( λ ) f ( x 0 + k sin ω t )
i 2 ( t ) = μ c 2 ( x 2 - x 1 ) I ( λ ) σ ( λ ) f ( x 0 + k sin ω t ) ,
S 1 = α k ( d i 1 / d x 0 )
S 2 = α k ( d i 2 / d x 0 ) ,
S = S 2 / i 2 - S 1 / i 1
S = - α k d d x 0 log i 1 i 2 = - α k d log τ d x 0 = α k ( d f d x 0 ) ( d δ d λ ) λ 0 .
( λ 0 ) = k ( d log μ / d λ ) λ 0 ( d f / d x 0 ) .
ρ ( exp ) = 0.09.
ρ ( theor ) = ( d log μ / d λ ) λ = 5850 ( d f / d x ) λ = 5850 ( d δ / d λ ) λ = 5210 ( d f / d x ) λ = 5210
ρ ( theor ) = 0.08 ,
Δ S ( λ 0 ) = ( k 3 / 8 ) ( d 3 δ / d x 0 3 )

Metrics